
THE UNIVERSITY OF READING

A Framework for Refining Functional Specifications into

Parallel Reconfigurable Hardware Implementations

PhD Thesis in Computer Science

Department of Computer Science

John Hawkins

June 30, 2005

Declaration

I confirm that this thesis is my own work and the use of all material from other sources has

been properly and fully acknowledged.

i

Abstract

Reconfigurable logic devices such as the FPGA have brought about a revolution in the field

of hardware design. The reduction in development costs has had a huge impact on broadening

the scope of applications for which a hardware implementation is a realistic possibility. Current

FPGA devices run to many millions of gates, giving a huge potential for efficiency gains, benefiting

from the inherently parallel nature of hardware circuits. These devices continue to grow in size,

to the end that we can now seriously consider implementing even large scale systems purely in

reconfigurable logic.

Despite these advances, we find ourselves somewhat lacking in the tools and methodologies

required to fully exploit this potential. Issues of hardware implementation and parallelism intro-

duce significant complexity into the design process. We argue that without the correct approach,

not only will this potential be under used, but the inherent complexity will undermine people’s

confidence about the correctness of resulting implementations, limiting the scope in which they

can be deployed.

This thesis presents a methodology in which an algorithm specified in a high level functional

programming language can be transformed and refined into a parallel implementation suitable for

execution on an FPGA device. All throughout the methodology, a clear path of proof is maintained,

so that the resulting implementations are provably correct.

The work in this thesis concerns refining functional programs into parallel networks of con-

current processes. Also, a refinement step from concurrent processes in the CSP notation to the

Handel-C hardware description language is introduced, which facilitates implementation on an

FPGA. Additionally, an extended notion of data refinement is presented, providing the developer

with choices for how to represent types from the specification in the implementation. Here we ex-

pand on the notion of the stream, a serial communication scheme, and also introduce the vector, a

data parallel communication scheme. This gives new scope to tackle a number of algorithms which

previously could not be addressed in a scalable manner, particularly those which involve quadratic

sized data structures such as the Cartesian product. Furthermore this new scope is complemented

with a rich library of provably correct, re-usable components, addressing both the stream and vec-

tor settings. These components refine commonly used higher order and list processing functions

from the specification. Finally the usefulness of these contributions is illustrated with a number of

case studies, covering not only academic style problems, but also real world applications.

Acknowledgements

First and foremost I owe a huge debt of gratitude to my supervisor, Ali Abdallah, who has been

a tremendous source of inspiration, guidance and motivation over the last few years. Additionally I

would like to thank my examiners for all their hard work in checking the thesis, and their insightful

discussion which led to some significant improvements.

A number of organisations deserve acknowledgement for the part they have played in helping

me to carry out this work. First, the EPSRC who provided me with a studentship for the first three

years. Next, Reading University and London South Bank University for providing the environment

and the support which has allowed this research to take place. Finally Softel Ltd, for being flexible

and allowing me to continue my studies whilst working there.

On a personal level I am extremely grateful to a number of fellow PhD students, for spurring

me on and creating many happy memories over the last few years. In particular from Reading -

Rob Lang, Mark Gasson and Michelle Fountain, three truly great people who will no doubt remain

life long friends. Additionally from the research group I was working at for the latter part of my

PhD, I’d like to say a big thank you to Mark Green, Issam Damaj and Hamdan Dammag, all of

whom showed me that there was a light at the end of the tunnel!

As anyone who has done a PhD will know, it can be a real feat of endurance, and often it is

not just you, but the people close to you who have to endure it! As such may I extend my thanks -

and apologies(!) to members of my family - particularly to Mum, Dad and Vera. Finally to Chie,

who has suffered with it more than most, I can’t ever say thank you enough for your patience and

perserverance.

i

Contents

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 3

1.2.1 Overall Objectives . 3

1.2.2 Requirements of the Methodology . 4

1.3 Contributions of the Thesis . 5

1.4 Notation . 6

1.4.1 Haskell . 6

1.4.2 BMF . 6

1.4.3 CSP . 7

1.4.4 Handel-C . 7

1.5 Related Work . 7

1.5.1 Functional Frameworks for Developing Hardware Designs 8

1.5.2 Program Transformation and Refinement 12

1.6 Thesis Overview . 12

2 Methodology Overview 14

2.1 Introduction . 14

2.2 Functions and Processes . 14

2.3 Example . 16

2.4 Summary . 18

3 Data Refinement 19

3.1 Introduction . 19

3.2 Refinement in General . 19

3.2.1 Example - Set Maximum . 20

3.2.2 Example - Adding to a Set . 21

3.3 Transmission Values . 22

3.3.1 Nothing . 22

ii

3.3.2 Items . 23

3.3.3 Streams . 23

3.3.4 Vectors . 25

3.3.5 Distributed Lists . 26

3.4 Combined Transmission Structures . 26

3.4.1 Stream of Streams . 27

3.4.2 Vector of Streams . 28

3.4.3 Stream of Vectors . 29

3.4.4 Vector of Vectors . 30

3.5 Transmission Values in Haskell . 31

3.6 Refinement to Transmission Values . 33

3.6.1 Items . 33

3.6.2 Streams . 33

3.6.3 Vectors . 34

3.6.4 Combined Structures . 36

3.7 Conduits . 40

3.7.1 Item Conduits . 41

3.7.2 Stream Conduits . 43

3.7.3 Vector Conduits . 43

3.7.4 Conduit Renaming . 44

3.7.5 Conduit Hiding . 45

3.8 Produce . 46

3.8.1 Nothing . 46

3.8.2 Items . 46

3.8.3 Streams . 47

3.8.4 Vectors . 49

3.9 Summary . 50

4 Process Refinement 51

4.1 Introduction . 51

4.2 Feed . 51

4.2.1 Vectors . 52

4.3 Process Refinement . 53

4.4 Pipe . 54

4.5 Pipelining . 56

4.6 Recursion Unrolling . 58

4.6.1 Tail Recursion . 58

4.6.2 Head Recursion . 59

iii

4.6.3 Pattern Matching . 60

4.7 Lazy Evaluation . 63

4.8 Conversions . 66

4.9 Summary . 66

5 Refinement of Key Higher Order Functions 67

5.1 Introduction . 67

5.2 Map . 67

5.2.1 Streams . 68

5.2.2 Vectors . 73

5.2.3 Streams to Vectors . 76

5.2.4 Vectors to Streams . 77

5.2.5 Combined Structures . 78

5.2.6 Distributed Lists . 78

5.2.7 Stream of Streams . 79

5.2.8 Vector of Streams . 81

5.2.9 Stream of Vectors . 82

5.2.10 Vectors of Vectors . 83

5.3 Fold . 85

5.3.1 Streams . 87

5.3.2 Vectors . 95

5.3.3 Combined Structures . 103

5.3.4 Distributed Lists . 104

5.3.5 Vector of Streams . 104

5.3.6 Stream of Streams . 106

5.3.7 Stream of Vectors . 107

5.3.8 Vectors of Vectors . 107

5.4 Summary . 108

6 A Library of Provably Correct Re-usable Hardware Components 109

6.1 Introduction . 109

6.2 Homomorphisms . 109

6.2.1 Streams . 110

6.2.2 Vectors . 112

6.3 Filter . 113

6.3.1 Streams . 113

6.3.2 Vectors . 119

6.3.3 Vector to Stream . 119

iv

6.3.4 Combined Structures . 120

6.3.5 Distributed Lists . 121

6.3.6 Stream of Streams . 121

6.3.7 Vector of Streams . 123

6.3.8 Stream of Vectors . 125

6.3.9 Vector of Vectors . 125

6.4 Unfold . 126

6.4.1 Streams . 129

6.4.2 Vectors . 131

6.5 Scan . 135

6.5.1 Stream to Stream . 136

6.5.2 Stream to Vector . 138

6.5.3 Vector to Stream . 138

6.5.4 Vector to Vector . 139

6.6 Zmap . 141

6.6.1 Streams . 141

6.6.2 Vectors . 142

6.7 Zfold . 142

6.7.1 Streams . 143

6.7.2 Vectors . 144

6.8 Divide and Conquer . 145

6.9 Summary . 149

7 Refinement of List Processing Functions 150

7.1 Introduction . 150

7.2 Construct . 150

7.2.1 Streams . 151

7.2.2 Vectors . 151

7.3 Concatenate . 152

7.3.1 Streams . 153

7.3.2 Vectors . 156

7.4 Length . 157

7.4.1 Streams . 158

7.4.2 Vectors . 158

7.5 Null . 159

7.5.1 Streams . 160

7.5.2 Vectors . 160

7.6 List Comprehensions . 162

v

7.7 Zip . 163

7.7.1 Streams . 164

7.7.2 Vectors . 168

7.8 ZipWith . 168

7.8.1 Streams . 169

7.8.2 Vectors . 170

7.9 Head and Last . 171

7.9.1 Streams . 172

7.9.2 Vectors . 173

7.10 Take and Drop . 173

7.10.1 Streams . 174

7.10.2 Vectors . 176

7.11 Init and Tail . 177

7.11.1 Streams . 177

7.11.2 Vectors . 180

7.12 Inits and Tails . 181

7.12.1 Stream to Stream of Streams . 182

7.12.2 Stream to Vector of Streams . 183

7.12.3 Stream to Stream of Vectors . 189

7.12.4 Stream to Vector of Vectors . 190

7.12.5 Vector to Stream of Streams . 190

7.12.6 Vector to Vector of Streams . 190

7.12.7 Vector to Stream of Vectors . 191

7.12.8 Vector to Vector of Vectors . 191

7.13 And, Or, Any, All . 191

7.13.1 Streams . 192

7.13.2 Vectors . 192

7.14 Cartesian Product . 193

7.14.1 Stream of Streams Output . 195

7.14.2 Vector of Streams Output . 196

7.14.3 Stream of Vectors Output . 200

7.14.4 Vector of Vectors Output . 200

7.15 Transpose . 201

7.15.1 Stream of Streams to Stream of Streams . 204

7.15.2 Vector of Vectors to Vector of Vectors . 204

7.15.3 Vector of Streams to Vector of Streams . 205

7.15.4 Stream of Vectors to Stream of Vectors . 205

vi

7.15.5 Stream of Vectors to Vector of Streams . 205

7.15.6 Vector of Streams to Stream of Vectors . 205

7.16 Segments . 205

7.16.1 Stream to Stream of Streams . 207

7.16.2 Stream to Vector of Streams . 207

7.17 Splits . 207

7.17.1 Vector of Streams Output . 208

7.18 Summary . 210

8 The Refinement Procedure 211

8.1 Introduction . 211

8.2 Procedure . 211

8.2.1 Step 1 - Initial Specification . 212

8.2.2 Step 2 - Program Transformation . 212

8.2.3 Step 3 - Data Refinement . 212

8.2.4 Step 4 - Process Refinement . 213

8.2.5 Step 5 - Implementation . 214

8.3 Example . 214

8.3.1 Step 1 - Initial Specification . 214

8.3.2 Step 2 - Program Transformation . 215

8.3.3 Step 3 - Data Refinement . 215

8.3.4 Step 4 - Process Refinement . 217

8.3.5 Step 5 - Implementation . 219

8.4 Summary . 220

9 Case Studies 221

9.1 Introduction . 221

9.2 Sorting . 221

9.2.1 Insert Sort . 222

9.2.2 Selection Sort . 225

9.2.3 Quick Sort . 229

9.2.4 Merge Sort . 231

9.3 Combinatorial Algorithms . 233

9.3.1 Minimum Distance . 233

9.3.2 Distinct Elements . 238

9.4 A JPEG Decoder . 241

9.5 DNA Processing . 251

9.6 Summary . 263

vii

10 Discussion 264

10.1 Future Work . 264

10.1.1 Automation . 264

10.1.2 Other Target Languages . 265

10.1.3 Wider Application Area . 266

10.1.4 Control Applications . 267

10.1.5 Alternative Communication Strategies . 267

10.2 Conclusion . 268

viii

List of Figures

2.1 Functions and Values. 15

3.1 The Stream . 23

3.2 Messages required over time to communicate a stream. 24

3.3 The Vector . 25

3.4 Messages required over time to communicate a vector. 26

3.5 The Stream of Streams . 27

3.6 Messages required over time to communicate a stream of streams. 27

3.7 The Vector of Streams . 28

3.8 Messages required over time to communicate a vector of streams. 29

3.9 The Stream of Vectors . 29

3.10 Messages required over time to communicate a stream of vectors. 30

3.11 The Vector of Vectors . 30

3.12 Messages required over time to communicate a vector of vectors. 31

3.13 The produce process for items. 47

3.14 The produce process for streams. 47

3.15 The produce process for items. 49

4.1 Refinement of the function application to process feeding. 52

4.2 Refinement of the composition operator to process piping. 55

4.3 Refinement of composed functions to pipelined process. 58

4.4 The Handel-C and CSP definitions of the process INSERT. 59

4.5 Typical pattern matching expressions on lists. 60

5.1 The map process for streams. 69

5.2 The simple case definition of the process SMAP. 72

5.3 The general case definition of the process SMAP. 72

5.4 The process F. 73

5.5 The map process for vectors. 74

5.6 The Handel-C implementation of the process VMAP. 76

ix

5.7 The map process with stream input and vector output. 77

5.8 The map process with vector input and stream output. 78

5.9 The map process for streams of streams. 80

5.10 The simple Handel-C definition of the process SMAP. 81

5.11 The map process for vectors of streams. 81

5.12 The Handel-C definition of the process VSMAP. 82

5.13 The map process for streams of vectors. 83

5.14 The Handel-C definition of the process SVMAP. 83

5.15 The Handel-C definition of the process VVMAP. 84

5.16 The fold process for streams. 88

5.17 A potential communication oriented implementation of the process SFOLDL. . . 90

5.18 The simple case Handel-C definition of the process SFOLDL. 93

5.19 The general case Handel-C definition of the process SFOLDL. 94

5.20 The process F for use with stream implementations of fold. 94

5.21 The simple case Handel-C definition of the process SFOLDR. 95

5.22 The fold process for vectors. 97

5.23 A funnel implementation of the VFOLD process. 97

5.24 A linear implementation of the VFOLDL process. 98

5.25 A linear implementation of the VFOLDL1 process. 99

5.26 A linear implementation of the VFOLDR process. 100

5.27 A linear implementation of the VFOLDR1 process for vectors. 100

5.28 The Handel-C definition of the process VFOLDR. 102

5.29 The Handel-C definition of the process VFOLDL. 103

5.30 The VSFOLDL process. 105

5.31 An alternative construction of the VSFOLDL process. 106

6.1 The map process for streams. 115

6.2 The simple case definition of the process SFILTER. 118

6.3 The definition of the process SPERHAPS. 118

6.4 The filter process with vector input and stream output. 120

6.5 The Handel-C definition of the process SSFILTER. 123

6.6 The Handel-C definition of the process VSFILTER. 125

6.7 The unfold process in stream terms. 129

6.8 The simple case definition of the process SUNFOLDR. 131

6.9 The general case definition of the process SUNFOLDR. 131

6.10 The process V UNFOLDR. 133

6.11 The process V UNFOLDL. 134

6.12 The Handel-C definition of the process VUNFOLDR. 134

x

6.13 The Handel-C definition of the process VUNFOLDL. 135

6.14 The process SSCANR. 137

6.15 The process SSCANL. 137

6.16 The process SV SCANR. 139

6.17 The core of the Divide and Conquer algorithm. 147

6.18 The expanded Divide and Conquer process expanded to two levels. 148

7.1 The zip process for streams. 165

7.2 A simple CSP definition for the process SZIP. 166

7.3 A finite state machine for the process SZIP. 166

7.4 A more complex CSP definition for the process SZIP. 167

7.5 The process V ZIPWITH. 171

7.6 A single component of the process SVSTAILS. 185

7.7 The process SV STAILS. 186

7.8 The process SV STAILS+. 187

7.9 A single component of the process SVSINITS. 188

7.10 The process SV SINITS. 189

7.11 The Handel-C definition of the process TL. 189

7.12 The Handel-C definition of the process SVSTAILS. 190

7.13 The process PR. 198

7.14 The process PR(x). 198

7.15 A process producing a distributed Cartesian product as a vector of streams. 199

7.16 The process SP(k). 209

7.17 The process VSSPLITS. 209

8.1 An illustration of the steps in the refinement procedure. 211

8.2 The process SCALC. 218

8.3 The VSCALC process network. 218

8.4 Handel-C definition for the process SCALC. 219

8.5 Handel-C definition for the process SCALC. 220

9.1 The insert sort process. 224

9.2 The process SMINEX. 227

9.3 The VMINSORT process. 228

9.4 The Handel-C definition of the process SMINEX. 228

9.5 The core of the parallel Quick Sort process algorithm. 231

9.6 A funnel implementation of the merge sort algorithm. 233

9.7 A network to solve the minimum distance problem for the lists xs and ys 236

9.8 Handel-C definition for the minimum distance problem. 236

xi

9.9 A network to solve the distinct elements problem for the list xs 240

9.10 Handel-C definition for the distinct elements problem. 240

9.11 A demonstration of how a JPEG image can be split into intervals. 245

9.12 The JPEG decoder process network. 248

9.13 The SDECODEINTERVAL process. 249

9.14 The VDECODESCAN process. 249

9.15 The matrix output by the function lmcsb. 254

9.16 The matrix output by the function lmcsc. 255

9.17 The process SSTAGE(x). 259

9.18 The VSLMCS process. 259

9.19 Handel-C implementation of the SSTAGE process. 261

9.20 Handel-C implementation of the VSLMCS process. 262

9.21 Test harness for the VSLMCS process. 262

xii

Chapter 1

Introduction

1.1 Background

As the field of computing has grown, so have demands on performance and reliability of systems. In

many areas, such demands have forced us to consider moving away from more traditional computing

paradigms and looking instead to alternative and novel architectures. These requirements incur a

price, in that the design and implementation of such systems becomes ever more complex. Nowhere

is this more true than in the fields of hardware design and parallel processing. The burden of

complexity on developers and engineers becomes so great in these environments that it would be

naive in the extreme to expect successful results from a purely ad-hoc design process. Arguably,

rigorous design methodologies are not just desirable, but are in fact essential.

Hardware design introduces a number of development issues that are not so evident in the field

of software engineering. To begin with, the lower level nature of a hardware implementation makes

it far more difficult for an engineer to conceptualise, and therefore significantly more difficult to

develop. A second, and perhaps larger concern, is that the more physical nature of the hardware

development process traditionally makes it extremely costly. In software engineering, compilation

is typically a quick and inexpensive task, which tends to encourage (for better or worse) something

of a ‘trial and error’ approach to system development. In traditional hardware design (e.g. ASIC

development), an equivalent iteration requires the physical construction/modification of a circuit

or device which can be extremely time consuming and costly. Moreover, in many cases any errors

present can be far more difficult to detect than in an equivalent software based solution. There

is therefore a much stronger incentive to produce designs that are error-free before any actual

physical implementation occurs.

The nature of parallel processing will also add significant complexity into the design of a system.

An entire extra dimension is added to system development which not only brings with it a whole

new area of potential problems, but also introduces new challenges in terms of maximising effi-

ciency. The selection of a model for parallel processing is an extremely important part of designing

CHAPTER 1. INTRODUCTION 2

any parallel algorithm. Broadly the models fall into two categories; those using shared memory

and those relying on message passing. Intuitively many developers creating ‘ad-hoc’ parallel im-

plementations tend to opt initially for shared memory architectures as they are typically simpler

to develop and seemingly incur less overhead. However, shared memory architectures are subject

to the obvious bottlenecks caused by contention over simultaneous resource access. As a result

these architectures do not scale as well as those relying on message passing. On the down side, the

often complex interactions that occur in a message passing environment can make the reliable and

efficient design of such systems extremely difficult. A methodology that helped to abstract away

much of this complexity would be a very useful commodity.

Reconfigurable logic devices, such as the FPGA, have brought about something of a revolution

in hardware design. Complex circuitry can be mapped onto these devices without the requirement

for any expensive machinery or manual effort. This, coupled with the fact that a single device can

be reconfigured over and over again, has potential to utterly transform the cost of the hardware

design process. To begin with, devices like the FPGA only had a relatively small number of gates,

so were typically only used for ‘glue logic’, as a bridge between other parts of a hardware design.

Now, however, we are seeing FPGA chips with many millions of gates, and we are beginning to

realise the potential for implementing entire complex systems using reconfigurable logic alone. As

ever though, the burden of complexity on the developer presents a significant bottleneck in the

progress of this technology. Without the correct tools to help manage this complexity it is unlikely

the potential of reconfigurable logic devices could ever be exploited to its full.

Some headway has been made in this direction, with the introduction of hardware descrip-

tion languages such as VHDL [88], Verilog [89] and more recently Handel-C [34]. However, one

might still consider these languages as relatively low level, when compared to the kinds of lan-

guages available for software design. Additionally, such languages do not enforce a complete design

methodology, and as such the behaviour of the system is still left very much in the hands of the

individual developer. This means that there is still a significant bulk of effort required by the

developer, who in the absence of any other guidance is likely to make design decisions on an ad-hoc

basis, which may be prone to errors and not necessarily optimal in terms of efficiency.

Moreover, whilst reconfigurable logic has made significant improvements to the timescales re-

quired in hardware design, the process is still notably slower than conventional software design.

Generating FPGA configurations - from compilation of hardware description languages, through

to the place and route - is by no means a trivial task for the tools involved, particularly where

complex designs are concerned. Compilation cycles are likely to be somewhat more lengthy than

in a traditional software development setting - in the extremes this can be hours or even days.

Whilst we may consider trial-and-error more of a feasible approach in reconfigurable logic than in

the case of ASIC design, it is still likely to be unacceptably time consuming. Again, an approach

which could produce designs which are provably error-free would be highly desirable.

2

CHAPTER 1. INTRODUCTION 3

Functional programming languages [20] provide a very high level of abstraction. They allow

algorithms to be specified in terms of a relationship between their input and output, rather than by

a sequence of language specific processing instructions, as is the case in the imperative setting. An

algorithm expressed in the functional style is typically much closer to a specification than it is to an

implementation in the imperative sense. However, a functional program still remains a machine-

executable piece of code. This high level nature can greatly speed up the development process -

one can often write in just a few lines of functional code a program that might take hundreds in an

imperative context. Functional languages tend to capture the ‘essence’ of an algorithm, without

bogging the developer down so heavily with the intricacies of syntax and behaviour introduced by

imperative languages. The quality of referential transparency held by functional languages is also

something of great usefulness to us. This allows any part of a functional program to be replaced

by an alternative expression that we know to be functionally equivalent, safe in the knowledge that

the overall functionality of the algorithm will remain the same. This makes functional languages an

ideal framework for program transformation, and for proving properties about our algorithms. We

therefore have scope to construct programs which are provably correct and guaranteed to satisfy

conditions we impose upon them.

Such properties make functional programming languages ideal candidates for the high level

specification of parallel hardware implementations.

1.2 Objectives

1.2.1 Overall Objectives

The overall objective of this research is to develop a methodology which reduces the complexity of

engineering efficient parallel hardware implementations. This we can break down into two principal

goals.

First, we wish to reduce the complexity of design involved in the development of hardware

implementations. At the lowest level of a hardware implementation, the interaction between parts

of a circuit are extremely difficult for a human engineer to comprehend, particularly given the speed

and the presence of concurrency. The larger reconfigurable devices become, the larger the designs

that can be implemented on them, and consequently this complexity increases dramatically. We

might reasonably expect an engineer to be able to explicitly design a circuit for a few hundred

or perhaps a few thousand gates, but when we begin to look towards designs involving millions

of gates then this task becomes simply insurmountable. Abstraction must be employed to let the

engineer manage the scope and size of such designs. Arguably the greater the level of abstraction,

the larger the design that can be intellectually managed.

Secondly, we wish also to reduce the complexity inherent in quality assurance for hardware

implementations. Traditional approaches to quality assurance for hardware implementations, such

3

CHAPTER 1. INTRODUCTION 4

as model checking and exhaustive testing, may well have suited designs involving a few thousand

gates. However, these approaches will simply not scale when we come to consider designs involving

millions of gates. Without sufficient methods to assert the correctness of systems implemented in

large scale reconfigurable logic the scope for application of this technology will be severely limited.

Reconfigurable devices could prove to be of great benefit in a number of application areas, and

arguably at present their full potential is far from being realised. However, without appropriate

techniques to ensure they will operate correctly they are not likely to be adopted in many of those

areas, particularly those with a safety critical aspect, such as aviation.

So, we wish to develop a methodology which gives as high level of abstraction as possible,

whilst also providing us assurance of correct implementation. Both of these goals should be realised

with scalability in mind; with a view to accommodating ever increasing sizes of implementations.

As in the field of conventional software design, we can naturally expect that increased sizes of

implementations will result in increased build costs. However, when implementing in hardware

this issue can be even more acute. Development tools for reconfigurable logic can take a significant

amount of time - hours, even days - to compile large hardware designs. This, coupled with the

added difficulties of debugging in hardware, makes the traditional ”build and test” cycle of software

design very poorly suited indeed to the development of hardware implementations.

Both the issues of engineering complexity and the requirement for quality assurance would be

greatly assisted by a framework in which implementations could be derived which are correct by

construction. That is to say, given a specification which we know to satisfy our requirements,

we require a methodology with which we can formally derive a correct implementation from it.

In other words we require a framework in which clearly understandable high level specifications

can be taken and refined into hardware implementations by means of a process in which proof of

correctness is maintained throughout.

1.2.2 Requirements of the Methodology

Such a methodology brings with it its own set of objectives or requirements, which can be seen as

sub-objectives of this thesis. We shall examine these here.

• The methodology should facilitate the refinement from a high level functional language, for

which we have chosen Haskell [20], to a language which allows implementation on an FPGA,

for which we have chosen Handel-C.

• The methodology should allow for parallelism to be exposed and exploited during the refine-

ment process.

• The methodology should provide alternatives for supporting different kinds of parallelism, of

both the data and functional (pipe) varieties.

4

CHAPTER 1. INTRODUCTION 5

• The methodology will be required to provide a mechanism for relating between the functional

style used in the specification and the behavioural style required by an implementation.

• The methodology should express behavioural definitions in a framework which allows formal

reasoning about processes and communication, and for this we choose CSP.

• The methodology should allow us to move from CSP definitions to Handel-C implementations.

• The methodology should promote a library of powerful higher order components to promote

code reusability.

• The methodology should be intellectually manageable.

• The methodology should facilitate the development of efficient implementations. We shall

concern ourselves particularly with scalable efficiency - for example, quadratic time algorithms

which, through parallelism, can be implemented in linear time with linear resources.

• The methodology should maintain correctness of refinement throughout, such that we can

reassure ourselves that the final resulting implementations is correct with respect to our

starting specification.

1.3 Contributions of the Thesis

The work in this thesis is based on that of Abdallah [1, 2, 3] in deriving the core of the approach for

refining functional specifications into parallel networks of CSP [42] processes. The work presented

in this thesis adds to and extends this approach in a number of ways, which we shall outline here.

Extension to Hardware Design. With the introduction of an additional refinement step to

Handel-C, we have added scope for algorithms developed using this approach to be implemented

on an FPGA. This provides us with a real platform in which parallelism can be exploited and

efficient implementations can be realised. This also results in a framework which allows us to

create provably correct implementations in reconfigurable logic.

Data Refinement. In the earlier work a list type in a functional specification had just one

interpretation in the process setting - as a sequential series of messages on a single channel. In this

work we identify this as a stream, which is just one of two possible strategies for refining a list into

communication between processes. Here we also introduce the vector, a data parallel communica-

tion scheme. This allows us to tackle many algorithms which could not previously be addressed

in a scalable manner. A good example of this is Cartesian product - this results in a quadratic

sized output. With only sequential communication available to us we cannot possibly derive a

truly scalable implementation. This scope to deal with data parallelism and manage quadratic

sized data structures within the framework opens up many interesting patterns of computation,

and these are explored in this work.

5

CHAPTER 1. INTRODUCTION 6

Library of Components. We expand on those higher order functions which had already

been investigated in the earlier work (chiefly map, fold and filter) by exploring how they may be

interpreted in the vector setting, as well as in stream terms. Furthermore, we explore a number

of additional higher order and list processing functions which had not previously been examined,

often because their implementations were not practical prior to the introduction of vectors. In

addition we explore how all of these building blocks may be implemented in Handel-C, to provide

a library of provably correct components for hardware design.

Case Studies. Finally in this work we present a number of case studies which illustrate

new algorithms and applications which may be tackled thanks to the extensions made to the

approach. These include both academic style problems such as sorting, and also some real world

applications - a JPEG decoder and an algorithm for DNA processing. We typically take quadratic

time algorithms, and use our methodology to derive linear time implementations in reconfigurable

logic. Our implementations not only achieve the goal of truly scalable efficiency, but are also

provably correct.

1.4 Notation

Several different types of notation will be employed throughout this thesis, and these are introduced

here.

1.4.1 Haskell

We shall use Haskell [37, 18] as the functional programming language in which our original speci-

fications will be provided. We shall write Haskell code in italics, with identifiers typically in lower

case, with the exception of types and type constructors which, following the Haskell convention,

begin with a capital letter, and proceed in lower case. An example Haskell function is given below:

inc :: Int → Int

inc x = x + 1

1.4.2 BMF

At times we shall employ the Bird-Meertens Formalism [19, 16], which can be considered as an

abstract functional language with a very close correspondence to Haskell. BMF is particularly

well suited to reasoning about functional programs as it enjoys a rich set of laws for program

transformation. In fact, BMF can be used more or less interchangeably with Haskell, the only

notable exception being that typically in BMF the commonly used higher order functions are

written as binary infix operators.

6

CHAPTER 1. INTRODUCTION 7

1.4.3 CSP

We shall use CSP [42] for the formal specification of processes derived from our functional specifi-

cations. We shall use italics again for CSP, however we will write process names all in upper case

to distinguish them from the names of functions. An example CSP process is given below:

INC = in ? x → out ! (x + 1) → SKIP

1.4.4 Handel-C

Our final implementations shall be provided in Handel-C [34], which is then compilable to produce

actual configurations for FPGA devices. Handel-C closely follows many of the underlying semantics

of CSP, including the communication model, allowing us to implement many CSP specifications

directly with only small syntactic changes required. We shall use a fixed size font for Handel-C

code, again with process names given all in upper case, as illustrated below:

macro proc INC (in,out)

{

Int x;

in ? x;

out ! x + 1;

}

1.5 Related Work

The research reported in this thesis has been profoundly influenced by the work of numerous

computer scientists on functional programming [16, 20, 18], transformational programming [53,

19, 15], concurrency [42, 26], declarative hardware description languages [24, 58], and hardware

compilation techniques [34, 76].

In particular, the work of Abdallah [1, 2, 3] on devising the core of a transformational program-

ming methodology for the synthesis of message-passing parallel algorithms in CSP from high-level

functional specifications.

Other relevant related work includes formal frameworks and tools for hardware description,

verification [32], testing and model checking FDR [30], as illustrated by Peleska [77], Gordon,

Bowen, Josephs [50] and Jifeng [46].

In the remainder of this section we shall look at an overview of other frameworks for developing

hardware designs. Principally we shall look at frameworks which are based on functional languages

such as Haskell and MAL. These frameworks include µFP , Lava and SAFL. We shall also examine

other frameworks which, although not based on these conventional functional languages, are still

functional in nature, and share similar goals of abstraction and componentisation. As part of this

7

CHAPTER 1. INTRODUCTION 8

we look at techniques inspired by the work done on systolic arrays and regular architectures. We

shall also take a look at the broader field of program transformation and refinement.

1.5.1 Functional Frameworks for Developing Hardware Designs

mu FP

In her early work Sheeran [86] proposed µFP (a variant of Backus’s functional programming lan-

guage FP [10]) for specifying the behaviour of VLSI circuits and their geometric layout. In this

framework, a proof that two circuit descriptions have the same semantics may be obtained by

transforming one of the description to the other using µFP algebraic laws. The approach has

been applied by Jones and Sheeran [48] in order to derive parameterized representation of regular

synchronous circuits from their specifications.

Lava

The Lava language [24], developed at Chalmers by Sheeran et al, is a hardware description language

based on Haskell. Although Lava may have been intended originally as an experimental tool to

aid research into hardware verification [23], a version of the language is also used at Xilinx in an

industrial capacity for the implementation of real world applications on FPGA devices [87]. Lava

has built on earlier work, in particular the languages µFP [86], and Ruby [84, 47, 49]. Guo and

Luk developed a method for compiling Ruby programs onto an FPGA [33]. Ruby however differs

from Lava in one significant aspect, that the abstract specifications it uses are relations rather than

functions.

Functional programs in Lava are used to describe circuits directly, and as such specifications

are at a much lower level than in this work. For example, the following Lava program describes a

half adder circuit:

import Lava

halfadd (a, b) = (sum, carry)
where

sum = xor2 (a, b)
carry = and2 (a, b)

Lava provides a suite of attractive features to the prospective circuit developer. First we have

a Haskell library of commonly used hardware circuit components. Examples of these include the

xor2 and and2 components used above.

Also provided is the ability to perform simulations of a Lava circuit description from within

the Haskell environment. Given a circuit description and a set of input values, an appropriate

simulation function can then be employed to determine the output of that circuit. This coupled

with the rich expressiveness of Haskell gives scope for very powerful automated testing. This rapid

8

CHAPTER 1. INTRODUCTION 9

and immediate testing of a circuit design makes Lava an environment which is particularly well

suited to prototyping.

As an extension of the above, Lava allows properties to be defined and attributed to circuits.

These properties allow the developer to specify logical constraints for the circuit. Lava then supplies

a verification function which can hook into external theorem provers to determine whether or not

a given property is observed by the circuit definition.

However, circuits designed in Lava are by no means limited to prototyping, verification and

simulation. As already noted, Lava has been used to design and implement real world applications

[87]. Therefore an important feature of the Lava environment is the ability to generate VHDL

[72] from Lava circuit descriptions. These VHDL hardware descriptions are then implementable

on FPGA devices.

One interesting area of analogy between this work and Lava is in Lava’s notion of connection

patterns. These are effectively ”higher order circuits” and share some conceptual similarities with

the notions of higher order functions/processes used here. For example, the serial connection

pattern in Lava is defined as follows:

serial circ1 circ2 a = c
where

b = circ1 a
c = circ2 b

Here we have a higher order circuit which takes in two other circuits as parameters and composes

them together sequentially. As such the output of one circuit forms the input to another. This

bears analogy to the concept of process feeding (see Section 4.2), which models function application;

or process piping (see Section 4.4) which models function composition.

Similarly other connection patterns in Lava bear resemblance to the higher order functions/processes

used in this work. Lava’s map connection pattern has an obvious correspondence to our vector inter-

pretation of map. Furthermore, Lava’s tree connection pattern corresponds to the familiar funnel

network presented here as a potential refinement of fold in the vector setting. Finally, Lava’s row

connection pattern, has functionality similar to certain interpretations of either fold or unfold.

However, although these connection patterns do bear analogy to some of our higher order

processes, their treatment is somewhat different in Lava. The approach in Lava is somewhat more

bottom-up than that of this work. In Lava, these patterns have been identified as useful constructs

in circuit design, but not necessarily linked to the higher order functions that they represent. In

this work we have chosen instead to start with the higher order functions and explore from there

the different ways in which their functionality can be represented in hardware, with an emphasis

on ensuring correct refinement throughout.

In summary, the principle difference between the approach of Lava and that of this work is in

the level of abstraction. Lava advocates defining the behaviour of circuits directly in a functional

framework. In this work we suggest instead to synthesise the behaviour of the eventual hardware

9

CHAPTER 1. INTRODUCTION 10

implementation from a high level functional specification.

SAFL

SAFL [71] (and its successor SAFL+ [83, 81, 82]) is a first order functional language designed

for hardware description. It was developed principally by Sharp and Mycroft at the University of

Cambridge. SAFL takes its functional aspects from ML [65] rather than Haskell and also shares

some similarities with the HardwareC language [52]. SAFL+ implements synchronous channels

as found in Handel-C, however they are treated with more generality. A SAFL+ channel is not

restricted to a single transmitter/receiver pair as in Handel-C. An excerpt of SAFL+ demonstrating

how channels are dealt with is given below:

fun Accumulate(state) [c] =
let val read_value = c?

in if read_value=0 then state
else Accumulate(state+read_value) end

fun GenNumbers(state) [c] =
c!state; if c=0 then () else GenNumbers(state-1)

fun sum(x) =
static channel connect
in GenNumbers(x) [connect] || Accumulate(0)[connect] end

Here channels can be passed to fun constructs by way of a list of parameters. These are kept

intentionally separate from parameters which represent normal data (note the use of round and

square brackets). The above excerpt demonstrates how functions in SAFL+ represent a mixture of

functional and imperative/behavioural definitions. In this work we strive to keep the two separate,

given that, arguably, functions are best reasoned about in a purely functional environment (such

as Haskell), and processes are best reasoned about in a purely process oriented environment (such

as CSP).

SAFL abstracts away certain hardware details which must be made explicit in a Lava design.

As such it may be suggested that SAFL is a higher level description language than Lava. However,

reasoning about circuits is still done directly in the functional framework, and this is the one main

way in which the approach of SAFL differs from that of this work.

Pebble

Pebble [58], short for Parameterised Block Language, is a hardware design language with an em-

phasis on reusability and efficiency. It was developed by Luk, McKeever et al, at Imperial College

London. Pebble was born in part of earlier work to develop a parameterised, re-usable library for

FPGA development [59]. Attempts to develop this kind of library in existing versions of VHDL

were presumably one of the main areas highlighting the need for a new hardware description lan-

10

CHAPTER 1. INTRODUCTION 11

guage. Pebble can be considered as a much simplified variant of VHDL, but with greater support

for parameterisation in an attempt to promote better reusability.

Pebble programs are defined as blocks. An example block defining a half adder circuit is given

below.

BLOCK hadd (x,y:GENERIC) [a,b:WIRE] [cout,sum:WIRE] BEGIN
xor2 [a,b] [sum] MAP rloc IS "X,x,Y,y,";
and2 [a,b] [cout] MAP rloc IS "X,(x+1),Y,y,"

END;

As with Lava, Pebble programs can be compiled into VHDL allowing implementation on an

FPGA. The Pebble compiler also supports direct compilations to netlists. One of the major benefits

of Pebble is the ability to target different variants of VHDL, allowing greater portability of library

code when differing flavours of hardware description are required for the implementation. VHDL

is a surprisingly non-standard language, there are many different variants, and porting code from

one type of VHDL to another can be extremely laborious. By implementing library code in the

more general Pebble, this porting effort is greatly reduced.

Other Functional Frameworks

SMALL [74] is a programming language originally intended for state machine design, which is also

capable of generating FPGA configurations [85]. The approach in this work shares some similarities

with Handel-C and its predecessors [76]. Although an imperative language, as an interesting aside

the SMALL compiler is implemented in Haskell.

Jazz [45] is a language and framework designed for hardware description/synthesis, which has

some similarities with Lava. Although it is not built on pure functional foundations as Lava is, it

does support a polymorphic type system through an object oriented approach to hardware design.

Hawk [64], is a framework for the description and verification of microprocessors. Like Lava, it is

effectively a set of libraries based in Haskell. The emphasis here is more towards simulation rather

than actual development, however. HML [75] is a hardware description language based on ML.

Frameworks Based on Regular Arrays

Manjunathaiah and Megson described a technique for designing hardware components, as regular

array architectures, for high-throughput embedded systems applications [62]. The method is based

on deriving component designs using classical regular (or systolic) array synthesis techniques and

composing these separately evolved component design into a unified global design. A tool for

regularizing systems of affine recurrence equations (SARE) into uniform recurrence format has

also been developed [61]. The tool supports the designer’s task of specifying algorithms and for

synthesizing regular arrays.

11

CHAPTER 1. INTRODUCTION 12

1.5.2 Program Transformation and Refinement

Bird and Meertens have developed a calculus for functional algorithmic manipulations [19, 16]. de

Moor [15] has generalized this calculus to the relational level and Gibbons [21] has, among others,

shown its applicability in the derivation of several challenging problems.

Although this calculus has been mainly used for deriving efficient functional programs from their

specifications, the final form can also be used as a starting point for deriving efficient imperative

programs or parallel programs.

The formal concept of refinement can be traced to Dijkstra [29]. Hoare, Morgan, Sanders,

Woodcock and Jifeng have formalized the concept of data refinement [43] whilst Morgan provided

a full framework for specification refinement. Both the specification and the program are expressed

in the same (pre/post condition) notation. Davies and woodcock showed how data refinement can

be done on small Z specifications. Barros showed, in her PhD thesis [12], how large Z specifications

be systematically refined into functional programs using careful composition of data refinement

and functional refinement steps. Abdallah [1] showed using algebraic methods how to formally

refine functional programs into pipelines of CSP processes.

Page has shown how to compile high level circuit descriptions, expressed in the programming

language Handel-C [34], into hardware.

1.6 Thesis Overview

The remainder of this thesis is divided as follows.

Chapter 2 gives a general overview to the style of the methodology presented in this work.

Here we begin to explore the relationship between functions and processes, between data and

communication, and give a general feel for the methodology.

Chapter 3 presents the first step of the methodology, data refinement. This looks at how data

types in the specification can be refined into different models of transmission in the implementation,

thus beginning to define the behaviour and scope for parallelism.

Chapter 4 looks at process refinement; how we can move from a functional specification to a

behavioural implementation. Here we give criteria for the correctness of process refinement and

look at how different forms of functional definition can be refined to processes.

Chapter 5 introduces two key higher order functions - map and fold which will constitute the

‘building blocks’ of our implementations, and considers each of them in turn with respect to our

data refinement strategies presented in the previous chapter.

Chapter 6 expands this library with a number of other powerful components such as filter and

unfold.

Chapter 7 looks at a particular subset of components within out library of components - those

that refine list processing functions.

12

CHAPTER 1. INTRODUCTION 13

Chapter 8 details the refinement procedure - the steps that a developer would take in order to

derive an implementation using this methodology.

Chapter 9 presents some case studies demonstrating the application of this methodology.

Chapter 10 concludes the thesis. We first discuss the potential for future work. Following this

we summarise the findings of this research and evaluate the success of the methodology created.

13

Chapter 2

Methodology Overview

2.1 Introduction

The field of computing has, quite naturally, resulted in the development of a diverse array of

different paradigms and frameworks. The number of programming languages in existence today

runs to many thousands, and the difference between these is of course not purely syntactic. These

languages are generally designed with a particular problem area or implementation environment in

mind. As such a language promotes not just a means of communication with a processor, but also

an underlying ethos and design methodology. With so much diversity in these methodologies, they

understandably all have their relative strengths and weaknesses. It is therefore quite common to

employ more than one language in a design process - this of course happens implicitly every time

a compiler is involved. This transformation process can also be a human one though - for example

the interpretation of a formal specification to produce a concrete implementation.

The two classic goals of language design are abstraction and efficiency. Unfortunately these tend

to pull in opposite directions, and often the provision of one will be at the detriment of the other.

As a result these characteristics will feature heavily in the comparison of any two languages or

methodologies. Listen to any two programmers arguing about the relative merits of their favourite

language and almost certainly the battle ground will be drawn over these two areas.

2.2 Functions and Processes

Functional languages such as Haskell provide a very high level of abstraction. They allow us to

think more in terms of relationships between input and output, rather than defining a strict series

of actions to facilitate the computation, as is the way in imperative languages. In many ways

functional programs can be considered as closer to specifications than implementations. They are,

however, implementable, given an appropriate compiler or interpreter. The level of abstraction does

of course come at a price - functional implementations are typical less efficient than their imperative

14

CHAPTER 2. METHODOLOGY OVERVIEW 15

counterparts. In addition, the overheads brought about by this high level of abstraction mean that

they are currently not generally considered good candidates for implementation directly on novel

architectures such as the FPGA.

The world of processes, as inhabited by CSP, allows us to reason about behaviour and interaction

in a manner that functional languages are, quite deliberately, not equipped to address. In the

world of processes we can talk explicitly about parallelism. Thanks to the language Handel-C,

such process definitions are directly implementable onto an FPGA.

The requirement therefore seems clear - ideally we would like to exploit the abstraction, clarity,

correctness and ease of design inherent in the world of functions, whilst still being able to take

advantage of the efficiency of implementation in hardware via the world of processes. We would

like a framework that would give us the best of both worlds - the ability to specify an algorithm

functionally and from that derive a behavioural implementation in processes.

Given that they exist in different worlds, we cannot of course provide direct equivalences between

functions and processes. However, we can still move from one space to the other via refinement.

So, we cannot prove that a process implementation is equal to a functional specification, but we

may be able to supply criteria to prove that it correctly refines it.

In our functional space there are two types of entities that we shall need to consider, as demon-

strated in Figure 2.1.

¡
¡ª

@
@R

qFunctional Specification

Functions Values¶

µ

³

´

¶

µ

³

´
f
map

(+)
head

inc Bool
Int

[a]
[[a]]

(a, b)

Figure 2.1: Functions and Values.

So, we have both functions and data types to deal with. How will these manifest themselves in

our implementation? In effect this brings about two parts to deriving our implementation.

For values or data types in our specification, we have the task of data refinement to carry

out. This is concerned with determining how values passed around in our functional specification

will be dealt with in our implementation. Different architectures naturally result in different

implementation issues, and as such certain data structures are better suited to some architectures

than others. For example, whilst linked lists may be a convenient structure in a traditional CPU

based architecture, they are not nearly as straightforward to implement on an FPGA. However,

it is often not required to have a representation in our implementation that exactly mimics the

behaviour of the type in the specification. What we are actually trying to achieve is just to preserve

those abstract characteristics of our data structures which are important to us. So, for example, a

list is a structure that contains a group of items. Typically we assume this should have an ordering,

15

CHAPTER 2. METHODOLOGY OVERVIEW 16

but even this most basic characteristic may not be essential for our implementation to function

correctly. We may or may not require that items can be inserted into (or removed from) the list

in constant time; the list may or may not be required to change in size over time, and so on.

In a message passing environment it seems likely that at least some values will be refined

to communication between processes. How will this communication occur? For simple types,

such as booleans or integers, this may be a fairly straightforward decision. For more complicated

structures, such as lists and lists of lists, we may need to think more carefully about the alternatives

available to us. We may want to consider how these alternatives will effect the efficiency of our

implementation, and its scope for parallelism. Correctness is also of great importance. It will be

crucial to provide criteria to prove that any data refinement is valid, such that we can re-assure

ourselves that our final implementation correctly implements our specification. Data refinement is

investigated further in Chapter 3.

For functions in our specification, we have the task of process refinement to carry out. This

is concerned with mapping from the input/output relationships given by functions to the more

concrete behaviour of processes in the implementation. Again here, correctness is of the upmost

importance, and so we will require criteria to prove that a given function is correctly refined by the

process we chose to implement it with. Process refinement is investigated further in Chapter 4.

2.3 Example

Let us look at a general example of this refinement process. Consider that we have a function f

that we wish to refine to a process. The function f has the following type:

f :: A → A

So, f takes in some value of type A and returns a value of the same type. Let us provide a

specific definition for f , which will imply that A is in fact some form of integer type:

f x = x + 1

Let us consider the data refinement aspect of this procedure. In the specification, we have a

value x, of type A, which is passed as a parameter to the function f . In our implementation we

would like this value to be refined to some form of communication. For this, we shall require that

the specification type A is refined to some type which can be communicated. Depending on the

type we are refining, we may have more than one option for a method of communication. Let us

assume, for the purposes of this example, that values of the type A can be communicated ”as is”.

So, in order to refine our data type to communication, we will need to appeal to Prd, short for

‘produce’. This will be discussed in more detail in Chapters 3 and 4. Although Prd may at first

appear to be a process, it is in fact a function which returns a process. Once given its parameter

16

CHAPTER 2. METHODOLOGY OVERVIEW 17

(the value to produce) we then have a process in a particular state. In CSP terms we have the

following:

Prd(x) = out !x → SKIP

In effect, this represents our data refinement. The input value x in our specification is refined

to the communication of a value x on the channel out.

We now require a process refinement for the function f . An obvious candidate is a simple

process which has two channels. As such our candidate process P has the following alphabet:

αP = [in, out]

The behaviour of the process P is very simple. It reads a value on its input channel, and then

outputs that value plus one on its output channel. In CSP we have:

P = in?x → out!(x + 1) → SKIP

Informally, we may be content to visually inspect this definition and reassure ourselves it imple-

ments the required functionality. However, for the sake of correctness it is necessary to introduce

some formal criteria for asserting that the process P is indeed a valid refinement for the function

f .

The criteria for refinement pivots around the special function/process Prd. Additionally for

our process refinement criteria we will require a CSP operator which can link the output channel

of one process to the input channel of another. This can be achieved with the ‘feed’ operator,

represented by the ¤ symbol. This can be defined as follows, using CSP’s channel renaming and

hiding operators:

P ¤ Q = (P [mid/out] || Q[mid/in])\{mid}

In effect the feed operator models function application in the process world. Given this we can

supply a criteria for valid refinement as follows:

Prd(x) ¤ P = Prd(f x)

That is to say that the process P refines the function f if the act of producing x and feeding

it to P is equivalent to producing (f x) directly.

Through substitution into the left hand side of the above rule, we have:

(out !x → SKIP) ¤ (in?x → out!(x + 1) → SKIP)

Expanding the definition for the feed operator gives us:

((mid !x → SKIP) || (mid?x → out!(x + 1) → SKIP))\{mid}

17

CHAPTER 2. METHODOLOGY OVERVIEW 18

As both sides of channel mid are willing to communicate, and the channel is hidden, we can

simplify to the following:

out!(x + 1) → SKIP

This, of course, is equivalent to Prd (f x)

2.4 Summary

We have seen here that with the aid of some basic constructs like the feed operator and Prd, we

can move from the world of functions to the world of processes. These constructs have only been

introduced in very general terms here to give an overall feel for the methodology advocated in

this thesis. They will be dealt with in more depth and detail later. The important thing to note,

though, is that we can be assured to be maintaining correctness throughout development. At each

refinement step we can provide proofs to reassure ourselves that our implementations correctly

refine our specifications. In this way we are able to benefit from the best of both worlds - the high

level abstract nature of functional languages to aid in the specification and design, and the lower

level nature of languages like Handel-C which facilitate implementation in hardware and therefore

greater performance and reliability.

18

Chapter 3

Data Refinement

3.1 Introduction

One significant difference between the functional and process environments will be the manner in

which data is passed between components. In functional languages the flow of data is in parameters

to functions. When implementing in a message passing environment, this passing of parameters may

correspond to communication between processes. There may be more than one option available

to us when it comes to determining how this communication should take place. The choice of

communication method may have a significant impact on the efficiency of the implementation.

In this Chapter we shall take a detailed look at data refinement, how values and types in the

specification are represented in the implementation.

3.2 Refinement in General

It may be useful to introduce the notion of refinement in general terms as used in this work. In

this section we shall not talk specifically about refining to types suitable for use in reconfigurable

logic - we shall leave this for Section 3.3. We shall instead just discuss some illustrative examples.

Generally refinement will be employed as a means to move from an abstract specification towards

a concrete implementation. Let us consider an example. Let us assume that the set is an abstract

type. A set containing elements of type A can be written simply:

{A}

Given that the set is an abstract type, our implementation environment will not allow us to

implement it directly. We shall assume our environment does, however, have lists as a built-in

type. A list containing elements of type A can be written:

[A]

CHAPTER 3. DATA REFINEMENT 20

Let us consider employing the list as a refinement for the set. First, it is important to introduce

an abstraction function. This allows us to move from a value of our concrete type to a value of

our abstract type. In many cases, the inverse of this function will be a relation. That is to say, a

single value in the abstract type may have several corresponding values in the concrete type. Our

abstraction function, named abs, will be of the following type. Note often it is wise to give some

more detail in the name of this function to describe the types it will abstract to and from. Here,

however, for simplicity, we shall keep to merely abs:

abs :: [A] → {A}

Informally, we shall give it the following definition:

abs [x1, x2, ..., xn] = {x1, x2, ..., xn}

3.2.1 Example - Set Maximum

Now for an example refinement of a function within this setting. The function setmax takes in a

set of values and returns the highest value in the set:

setmax :: {A} → A

Given the binary maximum operator (↑), we can define it informally as follows:

setmax {x1, x2, ..., xn} = x1 ↑ x2 ↑ ... ↑ xn

In the list setting, we have a potential refinement of setmax we shall call listmax.

listmax :: [A] → A

An informal definition is similar to that for setmax.

listmax [x1, x2, ..., xn] = x1 ↑ x2 ↑ ... ↑ xn

For listmax to be deemed a valid refinement of setmax we shall require that the act of evaluating

listmax in list terms is equivalent to evaluating setmax in set terms. In other words we require

that the result of listmax applied to a given list is the same as the result of first abstracting the

list to a set, and then applying setmax to that. We can capture the required equivalence in the

following diagram:

{A} A

[A] A

6
abs

6
id

-setmax

-listmax

20

CHAPTER 3. DATA REFINEMENT 21

We shall use this kind of diagram frequently in this chapter, and so it may serve here to illustrate

how exactly it is to be interpreted. The starting point is the bottom left hand corner, where in

this case we have the type [A]. The end point is the top right hand corner, where we have the

type A. The arrows then describe two possible routes. The first (up, then across) corresponds to

the expression (setmax ◦ abs), and the second (across, then up) corresponds to the expression

(id ◦ listmax). The intermediate types for each of the two routes are also given - in the top left

and bottom right hand corners respectively. The question that the diagram poses is whether or

not taking either of the two routes will arrive at the same result. That is to say, for any list of type

[A], will we get the same result (of type A) by applying (setmax ◦ abs) as we would by applying

(id ◦ listmax)?

In other words our task is to prove that this diagram commutes, that is, we can move from

the bottom left hand corner, to the top right, via either route, and arrive at the same value. Note

no refinement is made of the result type (a single value of type A), so only the identity function

is used to move between this in the specification and implementation. In this case, the proof will

follow simply from a series of substitutions, based on the definitions previously presented:

(setmax ◦ abs) [x1, x2, ..., xn] {def.}
= setmax {x1, x2, ..., xn} {def. abs}
= x1 ↑ x2 ↑ ... ↑ xn {def. setmax}
= listmax [x1, x2, ..., xn] {def. listmax}
= (id ◦ listmax) [x1, x2, ..., xn] {def. id}

Thus we can state formally that listmax is a valid refinement of setmax.

3.2.2 Example - Adding to a Set

As another example, let us consider the function addset. This takes in a value of type A, and a

set, and returns the set with the value added. This has the following type:

addset :: A → {A} → {A}

Another way to look at this, by way of currying, is as the function (addset a). This takes in a

set, and returns that set with the value a added to it. This has the following type:

(addset a) :: {A} → {A}

We can define it informally as follows:

addset a {x1, x2, ..., xn} = {a} ∪ {x1, x2, ..., xn}

In a list setting we may wish to consider more than one possible implementation, depending

on our exact interpretation of the set implemented in list terms. Where our list implementation of

21

CHAPTER 3. DATA REFINEMENT 22

the set is unordered and we are not concerned about duplicates, we can implement using the cons

operator (:)

addlist a [x1, x2, ..., xn] = a : [x1, x2, ..., xn]

Should we wish to guard against duplicates in our list based representation of the set we may

wish to offer a different version:

addlist′ a [x1, x2, ..., xn] = a : filter (6= a) [x1, x2, ..., xn]

Alternatively, where our list based representation is ordered, we may want to instead choose

the following:

addlist′′ a [x1, x2, ..., xn] = insert a [x1, x2, ..., xn]

3.3 Transmission Values

Efficiency in an implementation, and in particular the scope for parallelism, will be heavily influ-

enced by the way in which the types in the specification are refined. When refining to a message

passing environment, we need to consider how values passed as parameters to functions in the

specification correspond to communications between processes in the implementation.

In functional programming terms, the concept of a value is very broad. So, an integer is a value,

and so is a list of integers, and indeed a list of lists of integers. It is our job here to consider the

counterparts of these values in the implementation environment.

We shall employ the term transmission values to encapsulate all values that are communicable

in our target environment. We may also occasionally term such values simply transmissions for

brevity. The different kinds of transmission values - items, streams, vectors and so on, will be

introduced in the following sections.

We shall be chiefly concerned with alternatives for refining the list, a type intrinsic to most

functional specifications. The list forms a good abstraction for most linear types, including the

array, commonly found in imperative programs.

3.3.1 Nothing

A function with a given return type must return a value of that type. A process, however, is not

necessarily obliged to output anything. In some cases we will find it useful to encapsulate a special

transmission value which results in no output, the value nothing. This value is valid in place of a

transmission value of any other type, be it an item, stream, vector or other transmission. We shall

see examples of its use later.

22

CHAPTER 3. DATA REFINEMENT 23

3.3.2 Items

Items are the simplest form of transmission value that correspond to some actual output. Items

encapsulate single, fixed size values such as integers, characters and booleans. We shall generally

assume items to be atomic - they require only a single action to communicate.

We may occasionally need to make a distinction between items, as transmission values, and

the functional values they represent in the specification. Given a type A in the specification, the

corresponding item type can be written:

Ȧ

Alternatively, using a Haskell style syntax, we have the type:

Item a

We shall use these two forms interchangeably.

3.3.3 Streams

The stream forms one of our two principal strategies for refining a list. The stream is a purely

sequential method of communicating a group of values. It comprises a sequence of messages on a

channel, with each message representing a value. Values are communicated one after the other, so

communication of the entire structure will require linear time with respect to the size of the list.

It is assumed that the receiving process does not know the size of a given stream in advance, so

the sending process will have to notify it somehow when transmission is complete.

Let us consider the notation we shall use for representation of the stream type. Given some

type A, a stream containing values of type A is denoted simply:

bAc

Alternatively, using a Haskell style syntax, we have the type:

Stream a

Again, we shall use these two forms interchangeably.

eot-r
value-r

Figure 3.1: The Stream

Depending on the implementation environment, there may be several different strategies for

signalling the end of transmission (EOT). Given knowledge of the type of values being communi-

cated, one might intuitively suggest to set a side a rogue value to represent EOT. This approach

23

CHAPTER 3. DATA REFINEMENT 24

has its disadvantages, however. Not only does it lack genericity, we may often encounter situations

where all possible values in the given type are used - for example, booleans. Another alternative

might be to pair every value communicated with an additional boolean value to determine whether

or not it indicates EOT. Although this should work with values of any type, it does introduce a

communication overhead which may be unacceptable in many settings. Perhaps the most generic

approach, with the least overhead, is to introduce a second channel on which the end of trans-

mission can be signalled. After all of the values in the stream have been communicated along the

value channel, a single bit is communicated along the eot channel to signal the end of transmission.

This mechanism is depicted in Figure 3.1.

eot

value
-

time

6

x1 x2 ... xn

EOT

Figure 3.2: Messages required over time to communicate a stream.

Figure 3.2 illustrates the sequence of messages which occur in order to communicate a stream

using this model. It is important to make clear some assumptions about this communication strat-

egy, and we shall discuss these here. The values in the stream (here x1, x2, ..., xn) are transmitted

in order, one after the other, on the value channel. As is illustrated on the diagram there may

be a gap in time between consecutive values being transmitted. Furthermore this gap may not

necessarily be constant. After the last value (here xn) has been transmitted the producer has the

responsibility of then signalling the end of transmission on the eot channel. Again, there may be a

gap in time between the last value being transmitted and the end of transmission being signalled.

The responsibilities of the producer and consumer with respect to a stream can therefore be clearly

mapped out. The producer must only be willing to engage in output on the value channel, until

the last value has been transmitted. After this it must only be willing to engage in output on the

eot channel, and after a successful transmission of the EOT signal it may then terminate. The

consumer must be willing to engage in input on either the eot or value channels throughout trans-

mission. Upon an input occurring on the eot channel it then terminates. We can express these roles

formally in CSP, defining two behavioural specifications. All producers and consumers of streams

must adhere to the appropriate one of these specifications if they are to correctly implement their

part of the stream transmission procedure. The alphabets of these processes must contain the same

two channels, as illustrated below:

αSPRODUCE, αSCONSUME = {value, eot}

First, the definition for the producer:

24

CHAPTER 3. DATA REFINEMENT 25

SPRODUCE (Stream (x : xs)) = value ! x → SPRODUCE (Stream xs)

SPRODUCE (Stream []) = eot ! EOT → SKIP

For the consumer we have the following:

SCONSUME = value ? x → SCONSUME

|
eot ? EOT → SKIP

3.3.4 Vectors

The vector is an alternative refinement for a list. Whereas the stream implements a totally se-

quential mechanism, the vector is a totally parallel one. Each item to be communicated by the

vector will be dealt with independently in parallel. A vector refinement of a simple list of items

will communicate the entire structure in a single step, in constant time. The vector is depicted in

Figure 3.3.

value1-r
value2-rppp
valuen-r

Figure 3.3: The Vector

Given some type A, a vector of length n, containing values of type A, is denoted:

〈A〉n

Alternatively, using a Haskell style syntax, we have the type:

V ector a

We may consider the value n, the size of the vector, to be part of the type of the vector. Vectors

must be of the same size to be deemed ‘compatible’. Given two differing values n and m, the type

〈A〉n is not the same as the type 〈A〉m.

Figure 3.4 illustrates the messages required to communicate a vector of items. Whilst all the

items must be communicated independently in parallel, we do not however assert that they must

all be transmitted at exactly the same point in time. See Section 3.4.2 for an example of where this

may be a desirable feature. The communication of the structure as a whole is complete when the

last (i.e. slowest) component item has been transmitted. As with the stream case, the producer

25

CHAPTER 3. DATA REFINEMENT 26

valuen

value2

...

value1

-
time

6

x1

x2

...

xn

Figure 3.4: Messages required over time to communicate a vector.

and consumer at either side of the vector communication must adhere to a particular behaviour.

This can be defined by the following two CSP processes. The alphabets of these processes must

contain the same set of channels, as illustrated below:

αV PRODUCEn, αV CONSUMEn = {value1, value2, ..., valuen}

First, the producer:

V PRODUCEn (V ector v) =

n

||
i = 1

valuei ! vi → SKIP

Secondly, for the consumer:

V CONSUMEn =

n

||
i = 1

valuei ? xi → SKIP

3.3.5 Distributed Lists

One additional strategy to consider when refining a list is to partition it into sub-segments, which

may then be viable for independent communication. In essence, by employing distributed lists, we

are introducing an additional refinement step which may add scope for parallelism. A distributed

list refinement will refine from a list into a list of lists. This will not be directly usable in our

implementation - we will then have to perform a further refinement step into some combined

structure, described below.

3.4 Combined Transmission Structures

Whenever dealing with multi-dimensional data structures, for example, lists of lists, we need to

think carefully about the alternatives for implementation and the consequences that may arise.

26

CHAPTER 3. DATA REFINEMENT 27

Effectively implementation options arise from differing compositions of our ”primitive” data re-

finements - streams and vectors. We shall consider just two dimensions here, however there is no

theoretical barrier to prohibit the refinement of three or more dimensional structures in a similar

manner.

3.4.1 Stream of Streams

eotA-r
eotB-r
valueB-r
(valueA)

Figure 3.5: The Stream of Streams

The stream of streams is a totally sequential means of communicating a list of lists, and as

such will offer us the least scope for data parallelism. This is depicted in Figure 3.5, and as the

diagram hopefully illustrates, this is in effect a stream embedded in another stream. Here a single

channel is used to communicate every single value, one at a time. Additionally, two separate means

of signalling EOT are required. One to denote that each sub-segment of the list has been fully

communicated, and another to denote that the communication of the structure as a whole has

completed. To illustrate this, consider the following stream of streams.

bbx1, x2, ..., xkc, by1, y2, ..., ymc, bz1, z2, ..., zncc

This would correspond to the sequence of messages depicted in Figure 3.6:

eotA

eotB

value
-
time

6

x1 x2 ... xn

EOT

y1 y2 ... yn

EOT

z1 z2 ... zn

EOT

EOT

Figure 3.6: Messages required over time to communicate a stream of streams.

Using this method, for a quadratic sized structure, communication will require quadratic time.

However, only a single processing element will be required.

27

CHAPTER 3. DATA REFINEMENT 28

3.4.2 Vector of Streams

eot1-r
value1-r
eot2-r
value2-r

ppp
eotn-r
valuen-r

Figure 3.7: The Vector of Streams

The vector of streams, depicted in Figure 3.7, communicates a number of streams independently

in parallel. Each stream will have its own value channel and an independent means of signalling

EOT. If we consider this mechanism as a refinement for a lists of lists, we may observe that

it provides us the ability to cope with sub-lists of differing lengths To illustrate this method of

communication, consider the following vector of streams.

〈bx1, x2, ..., xkc, by1, y2, ..., ymc, bz1, z2, ..., znc〉3

Communication of this structure can be considered as three processes composed together in

parallel. Each process has a separate value channel, and a separate means of signalling EOT. The

first process communicates the values x1, x2, ..., xk in order and then signals EOT. The second

communicates the values y1, y2, ..., ym in order and then signals EOT. The third communicates

the values z1, z2, ..., zn in order and then signals EOT. Communication of such a quadratic sized

structure in this way will take linear time and require linear processing elements.

The messages required to communicate a vector of streams are illustrated in Figure 3.8. It is

important to note here that the streams work quite independently of each other. One component

stream may well take longer than another to transmit - it may contain more items, for example.

Communication of the structure as a whole completes when the last component stream has been

fully transmitted.

28

CHAPTER 3. DATA REFINEMENT 29

value1

value

eot

value2

value

eot

...

valuen

value

eot

x11 x12 ... x1m

EOT

x21 x22 ... x2m

EOT

xn1 xn2 ... xnm

EOT

-
time

6

Figure 3.8: Messages required over time to communicate a vector of streams.

3.4.3 Stream of Vectors

eot-r
value1-r
value2-rppp
valuen-r

Figure 3.9: The Stream of Vectors

The stream of vectors is a sequence of communication stages, where at each stage a number of

values are communicated at the same time in parallel. As a refinement for a list of lists, it is only

applicable where the sub-lists are of equal length. To illustrate this method of communication,

consider the following stream of vectors.

b〈x1, x2, ..., xn〉n, 〈y1, y2, ..., yn〉n, 〈z1, z2, ..., zn〉nc

At the first stage, the entire sequence x1, x2, ..., xn is communicated in parallel as a vector, at

the same time. Following this, the values y1, y2, ..., yn will be communicated as a vector. Thirdly,

z1, z2, ..., zn will be communicated as a vector, and then EOT will be signalled for the structure

as a whole. As with the vector of streams, communication of such a quadratic sized structure in

this way will take linear time and require linear processing elements. The messages required to

communicate this structure are illustrated in figure 3.10.

29

CHAPTER 3. DATA REFINEMENT 30

value

eot

value1

value2

valuen

-
time

6

x1

x2

...

xn

y1

y2

...

yn

z1

z2

...

zn

EOT

Figure 3.10: Messages required over time to communicate a stream of vectors.

3.4.4 Vector of Vectors

value11-r
value12-r

ppp
value1n-r

value21-r
value22-r

ppp
value2n-r

ppp
valuem1-r
valuem2-r

ppp
valuemn-r

Figure 3.11: The Vector of Vectors

The vector of vectors communicates every item in every sub-list in the structure completely

independently in parallel. Let us consider the following vector of vectors.

〈〈x1, x2, ..., xn〉n, 〈y1, y2, ..., yn〉n, 〈z1, z2, ..., zn〉n〉3

All values in this structure will be communicated at the same time, in parallel. Despite the

quadratic size of this structure, communication can complete in constant time. However, the

requirement on processing elements will be quadratic. The messages required to communicate a

vector of vectors are illustrated in Figure 3.12.

30

CHAPTER 3. DATA REFINEMENT 31

value1

value1

value2

...

valuem

x11

x12

...

x1m

value2

value1

value2

...

valuem

x21

x22

...

x2m

...

valuen

value1

value2

...

valuem

xn1

xn2

...

xnm

-
time

6

Figure 3.12: Messages required over time to communicate a vector of vectors.

3.5 Transmission Values in Haskell

It may be useful to consider how transmission values can be modeled in a real functional lan-

guage, for example, in Haskell. One possibility is through usage of a single recursive datatype,

Transmission a:

data Transmission a = Item a |
Stream [Transmission a] |
V ector [Transmission a] |
Nothing

This has several drawbacks. First of all, the lack of clear type information. Regardless of the

complexity of a transmission value, whether an item, a stream, a vector of streams, or even a

stream of vectors of streams, the type will remain simply Transmission a. Secondly, the above

definition allows for values such as:

Stream[V ector a, Stream a, Item a]

As with lists, the components of streams and vectors must all be of the same type. Although

technically the above definition defines that a stream is the same type as a vector, we require a

model where the two are treated as different types, but with some shared properties. A better

solution is to consider Transmission a as a Haskell class with three instances:

31

CHAPTER 3. DATA REFINEMENT 32

class Transmission a

instance Transmission (Item a)

instance Transmission (Stream a)

instance Transmission (V ector a)

Basic definitions of Item, Stream and V ector may proceed as follows:

data Item a = Item a

data Transmission a => Stream a = Stream [a]

data Transmission a => V ector a = V ector [a]

Strictly speaking, we should allow for the value nothing in each of these types. Haskell type

constructors must be unique to a particular type, so we shall have to introduce a different extra

constructor in each case:

data Item a = Item a |
INothing

data Transmission a => Stream a = Stream [a] |
SNothing

data Transmission a => V ector a = V ector [a] |
V Nothing

We could then introduce a member to the class called nothing, which could return the corre-

sponding value for each instance. This form of definition allows us to combine these types together

easily and clearly to form more complex transmission values. For example, a simple integer trans-

mission would be defined as follows:

Item Int

A stream of integers would be defined:

Stream (Item Int)

A vector of streams of integers would be defined:

V ector (Stream (Item Int))

This nesting can continue up to any arbitrary level in theory, although in practice we will

seldom go much further than the three levels seen in the above example.

32

CHAPTER 3. DATA REFINEMENT 33

3.6 Refinement to Transmission Values

3.6.1 Items

Let us assume for now that refinement of items is trivial - an integer in the specification can be

directly refined to an integer in the implementation, a character to a character, a boolean to a

boolean and so on.

3.6.2 Streams

Let us consider the act of refining a list into a stream. The abstraction function for abstracting

from streams to lists has the following type:

absS :: bAc → [A]

This is effectively an adaptation of the identity function on lists:

absS bx1, x2, ..., xnc = [x1, x2, ..., xn]

In general, to prove that a function fa which operates on lists is correctly refined by a function

fc which operates on streams, we require that the following diagram commutes:

[A] [B]

bAc bBc

6
absS

6
absS

-fa

-fc

Let us look at an example: the function reverse. This takes a list and returns its reverse. As

such it has type:

reverse :: [A] → [A]

Informally, reverse may be defined as follows:

reverse [x1, x2, ..., xn] = [xn, xn−1, ..., x1]

In stream terms, let us consider a refinement called sreverse.

sreverse :: bAc → bAc

The functionality of sreverse mimics that of reverse.

sreverse bx1, x2, ..., xnc = bxn, xn−1, ..., x1c

For this to be a valid refinement of reverse, we will require the following diagram to commute:

33

CHAPTER 3. DATA REFINEMENT 34

[A] [B]

bAc bBc

6
absS

6
absS

-
reverse

-
sreverse

We can prove this as follows:

(reverse ◦ absS) bx1, x2, ..., xnc {id}
= reverse [x1, x2, ..., xn] {def. absS}
= [xn, xn−1, ..., x1] {def. reverse}
= absS bxn, xn−1, ..., x1c {def. absS}
= absS (sreverse bx1, x2, ..., xnc) {def. sreverse}
= (absS ◦ sreverse) bx1, x2, ..., xnc {def. ◦}

We may also find useful functions for dealing with tuples of streams. Most commonly we shall

encounter tuples of size two (pairs), and an abstraction function here will assist us in the refinement

of binary operators. For a pair of streams, to abstract to a corresponding pair of lists, we shall

require an abstraction function with the following type:

abs2S :: (bAc, bBc) → ([A], [B])

This will have the following informal definition:

abs2S (bx1, x2, ..., xnc, by1, y2, ..., ymc) = ([x1, x2, ..., xn], [y1, y2, ..., ym])

As one might expect, we can define it more formally in terms of absS :

abs2S (xs, ys) = (absS xs, absS ys)

3.6.3 Vectors

Let us consider the act of refining a list into a vector. The abstraction function for abstracting

from vectors to lists has the following type:

absV :: 〈A〉n → [A]

This is, again, an adaptation of the identity function on lists:

absV 〈x1, x2, ..., xn〉n = [x1, x2, ..., xn]

As before, we can prove that a function fa which operates on lists is correctly refined by a

function fc which operates on vectors if and only if the following diagram commutes:

34

CHAPTER 3. DATA REFINEMENT 35

[A] [B]

〈A〉n 〈B〉n

6
absV

6
absV

-fa

-fc

As an example, let us again consider refinement the function reverse. In vector terms, let us

consider a refinement called vreverse.

vreverse :: 〈A〉n → 〈A〉n

The functionality of vreverse mimics that of reverse.

vreverse 〈x1, x2, ..., xn〉n = 〈xn, xn−1, ..., x1〉n

For this to be a valid refinement of reverse, we will require the following diagram to commute:

[A] [B]

〈A〉n 〈B〉n

6
absV

6
absV

-
reverse

-
vreverse

We can prove this as follows:

(reverse ◦ absV) bx1, x2, ..., xnc {id}
= reverse [x1, x2, ..., xn] {def. absV }
= [xn, xn−1, ..., x1] {def. reverse}
= absV 〈xn, xn−1, ..., x1〉n {def. absV }
= absV (vreverse 〈x1, x2, ..., xn〉n) {def. vreverse}
= (absV ◦ vreverse) 〈x1, x2, ..., xn〉n {def. ◦}

As with the stream case, we may also find useful functions for dealing with tuples of vectors.

For a pair of vectors, to abstract to a corresponding pair of lists, we shall require an abstraction

function with the following type:

abs2V :: (〈A〉n, 〈B〉m) → ([A], [B])

This will have the following informal definition:

abs2V (〈x1, x2, ..., xn〉n, 〈y1, y2, ..., ym〉m) = ([x1, x2, ..., xn], [y1, y2, ..., ym])

As one might expect, we can define it more formally in terms of absV :

abs2V (xs, ys) = (absV xs, absV ys)

35

CHAPTER 3. DATA REFINEMENT 36

3.6.4 Combined Structures

Distributed Lists

Functionally, we shall model our distributed list as a list of lists. As such, given some type A, a

distributed list refinement of a list of A is denoted simply [[A]].

An abstraction function for distributed lists should have the following type:

absD :: [[A]] → [A]

There may be several different interpretations of the implementation of absD, depending on the

partitioning scheme used. Any partition and abstraction function pair must satisfy the following

equation:

absDn ◦ partsn = id[]

Let us consider two here. The first corresponds to a partitioning scheme in which contiguous

subsections of the list are used in order. An example partitioning function could take the following

form:

parts1 n [] = []

parts1 n xs = take n xs : parts1 n (drop n xs)

In this scheme, the corresponding abstraction is simply a case of concatenating the segments

together:

absD1 = fold (++)

In an alternative scheme, the partitions may have been constructed in a transposed manner.

Here an abstraction function might proceed as follows (see Section 7.15 for a discussion of the

function transpose):

absD2 = absD1 ◦ transpose

A reverse transposition composed with our previous partitioning scheme provides us with our

new partitioning scheme.

parts2 n = transpose ◦ parts1 n

Again, we can prove that a function fa which operates on lists is correctly refined by a function

fc which operates on distributed lists if and only if the following diagram commutes:

[A] [B]

[[A]] [[B]]

6
absD

6
absD

-fa

-fc

36

CHAPTER 3. DATA REFINEMENT 37

Let us again consider our example reverse. Given that any function operating on lists can be

said to be homomorphic so long as it can be expressed as a fold composed with a map, we can

highlight the homomorphic nature of reverse by defining it as follows:

reverse = fold (flip (++)) ◦ map (λx • [x])

Here flip is a function which takes in a binary operator, and reverses the order of its operands:

flip (⊕) a b = b ⊕ a

Interestingly we can generalise this definition of flip when using in conjunction with fold:

(flip (⊕)) / = (⊕) / ◦ reverse

In a two dimensional setting, we have the function tdreverse. This will reverse the overall

structure as well as each individual sub-list.

tdreverse :: [[A]] → [[A]]

It can be defined as follows:

tdreverse = reverse ◦ map reverse

This should form a valid refinement for reverse in a distributed list setting. To prove this, we

require the following diagram to commute:

[A] [B]

[[A]] [[B]]

6
absD

6
absD

-
reverse

-tdreverse

We can prove the diagram commutes for this definition of tdreverse, along with our first

definition of absD as follows. Here [l1, l2, ..., ln] represents a distributed list (a list of lists) where

l1 is the first sub-segment, l2 is the second segment and so on.

(reverse ◦ absD1) [l1, l2, ..., ln] {id}
= (reverse ◦ (++)/) [l1, l2, ..., ln] {def. absD1}
= ((flip (++))/ ◦ map reverse) [l1, l2, ..., ln] {reverse promotion}
= ((++)/ ◦ reverse ◦ map reverse) [l1, l2, ..., ln] {def. flip}
= ((++)/ ◦ tdreverse) [l1, l2, ..., ln] {def. tdreverse}
= (absD1 ◦ tdreverse) [l1, l2, ..., ln] {def. absD1}

37

CHAPTER 3. DATA REFINEMENT 38

Stream of Streams

To abstract from a stream of streams to a list of lists, we can use the function absSS . This has

type bbAcc → [[A]]. One possible definition might proceed as follows:

absSS = map absS ◦ absS

To prove that some function, fa which operates on lists of lists is correctly refined by a function

fc which operates on streams of streams, we will require the following diagram to commute:

[[A]] [[B]]

bbAcc bbBcc

6
absSS

6
absSS

-fa

-fc

As an example of this, let us consider again our function reverse. Specifically, we are interested

in the two dimensional version tdreverse. Intuitively, we might construct a stream of stream

refinement of tdreverse as follows:

ssreverse = sreverse ◦ smap sreverse

Let us assume here we already have some function smap (which will be introduced later) which

is a valid refinement for map in stream terms.

[[A]] [[B]]

bbAcc bbBcc

6
absSS

6
absSS

-tdreverse

-
ssreverse

The proof that this diagram commutes, that is, ssreverse is a valid refinement of tdreverse, is

as follows:

38

CHAPTER 3. DATA REFINEMENT 39

(tdreverse ◦ absSS) bs1, s2, ..., snc {id}
= tdreverse [l1, l2, ..., ln] {def. absSS}
= [reverse ln, reverse ln−1, ..., reverse l1] {def. tdreverse}
= [reverse ◦ absS sn, ..., reverse ◦ absS s1] {def. absS}
= [absS ◦ sreverse sn, ..., absS ◦ sreverse s1] {sreverse}
= absS babsS ◦ sreverse sn, ..., absS ◦ sreverse s1c {sreverse}
= (absS ◦ smap (absS ◦ sreverse)) bsn, ..., s1c {def. smap}
= (absS ◦ smap (absS ◦ sreverse) ◦ sreverse) bs1, s2, ..., snc {def. sreverse}
= (absS ◦ smap absS ◦ smap sreverse ◦ sreverse) bs1, s2, ..., snc {map dist}
= (absS ◦ smap absS ◦ sreverse ◦ smap sreverse) bs1, s2, ..., snc {reverse}
= (absS ◦ smap absS ◦ ssreverse) bs1, s2, ..., snc {sreverse}
= (absSS ◦ ssreverse) bs1, s2, ..., snc {absSS}

Vector of Streams

To abstract from a vector of streams to a list of lists, we can use the function absV S . This has

type 〈bAc〉n → [[A]]. One possible definition might proceed as follows:

absV S = map absS ◦ absV

To prove that some function, fa which operates on lists of lists is correctly refined by a function

fc which operates on vectors of streams, we will require the following diagram to commute:

[[A]] [[B]]

〈bAc〉n 〈bBc〉n

6
absV S

6
absV S

-fa

-fc

A refinement of tdreverse in vector of stream terms, vsreverse, could proceed in a fashion

analogous to that for the stream of streams, above.

Stream of Vectors

To abstract from a stream of vectors to a list of lists, we can use the function absSV . This has

type b〈A〉nc → [[A]]. One possible definition might proceed as follows:

absSV = map absV ◦ absS

To prove that some function, fa which operates on lists of lists is correctly refined by a function

fc which operates on streams of vectors, we will require the following diagram to commute:

39

CHAPTER 3. DATA REFINEMENT 40

[[A]] [[B]]

b〈A〉nc b〈B〉nc

6
absSV

6
absSV

-fa

-fc

A refinement of tdreverse in stream of vector terms, svreverse, could proceed in a fashion

analogous to that for the stream of streams, above.

Vector of Vectors

To abstract from a vector of vectors to a list of lists, we can use the function absV V . This has type

〈〈A〉n〉n → [[A]]. One possible definition might proceed as follows:

absV V = map absV ◦ absV

To prove that some function, fa which operates on lists of lists is correctly refined by a function

fc which operates on streams of vectors, we will require the following diagram to commute:

[[A]] [[B]]

〈〈A〉m〉n 〈〈B〉m〉n

6
absV V

6
absV V

-fa

-fc

A refinement of tdreverse in vector of vector terms, vvreverse, could proceed in a fashion

analogous to that for the stream of streams, above.

3.7 Conduits

A conduit is the mechanism by which a transmission is carried. It is important here to note the

distinction between transmission values and conduits. Conduits can be considered as the physical

‘wires’ which allow transmission of a particular structure of values. Transmission values are the

actual messages which flow along those wires. A conduit can be viewed as a lifting of the CSP

concept of a channel. In fact, it will often be formed as a grouping of several CSP channels.

Here we assume all of these channels to be uni-directional, and to communicate between exactly

two processes. Each channel or conduit has exactly one producer on one side, which may only

output to that channel; and exactly one consumer on the other side which may only input from

that channel. We have three basic types of conduits: item conduits, stream conduits and vector

conduits. Conduits are recursive structures. Item conduits are the most primitive form, and may

40

CHAPTER 3. DATA REFINEMENT 41

not contain other conduits. Stream and vector conduits, however, may contain other conduits. A

Haskell style syntax may be helpful in outlining the potential for nesting of conduits:

Conduit a = ItemConduit a |
StreamConduit (Conduit a) |
V ectorConduit (Conduit a)

When defining alphabets of CSP processes, it may be helpful for clarity to state the type of

conduits used. We shall use the functional style operator (::). Additionally, we shall distinguish

between conduit types and transmission value types. So, given a process P , that includes a conduit

c of some conduit type T in its alphabet, we may write:

αP = {c :: T}

It is important to make a clear distinction between transmission values and conduits here. If T

expresses a type of transmission value, then T is a conduit type suitable for carrying such values.

3.7.1 Item Conduits

An item conduit is just a single CSP channel. If i is an item conduit we can input to and from it

directly. Thus the following are valid, providing x and y are of the correct type:

i ? x

i ! y

To define i as an item conduit to convey some type A we shall write:

i :: Ȧ

So, given a process P , which has i in its alphabet, we may write:

αP = {i :: Ȧ}

As a more concrete example, let us consider a conduit c which is suitable for the conveyance of

boolean transmission values. First of all, a transmission value b which is a boolean is described as

follows:

b :: ˙Bool

Our conduit type is therefore:

c :: ˙Bool

As such, a process P which has c in its alphabet may be specified as follows:

41

CHAPTER 3. DATA REFINEMENT 42

αP = {c :: ˙Bool}

In Handel-C terms, our item conduits should be directly implementable as Handel-C channels,

given that our definition of items here is limited to simple fixed size types. In Handel-C, integers

can be of any arbitrary size in bits, not necessarily a multiple of bytes (i.e. 8 bits). This size must

be explicitly stated when declaring a variable. similarly, channels to carry those integers must have

their size explicitly stated. So, to set up an item conduit to transmit 32 bit integer values, we have

the following:

chan int 32 ci;

An item conduit to deal with 7 bit ASCII values could be given as follows:

chan unsigned int 7 cc;

Similarly an item conduit to deal with Boolean values:

chan unsigned int 1 cb;

Of course, we may wish to add a little more meaning to these by providing some type synonyms:

typedef int 32 Int;

typedef unsigned int 7 Char;

typedef unsigned int 1 Bool;

We could then express our channels / conduits as follows:

chan Int ci;

chan Char cc;

chan Bool cb;

We may also find the following preprocessor definition useful:

#define Item(x) chan x

This would allow us to re-write the above definitions as follows:

Item (Int) ci;

Item (Char) cc;

Item (Bool) cb;

42

CHAPTER 3. DATA REFINEMENT 43

3.7.2 Stream Conduits

A stream conduit is a pair of conduits. The first conduit is a simple channel, used for the signalling

of the end of transmission (EOT). The second conduit will carry the values of this stream. In

the case of a simple stream of items, the value conduit will be an item conduit (i.e. a single CSP

channel). However, for different types of streams (streams of streams, streams of vectors and so

on) this conduit may have some more complex structure in itself. In terms of the syntax for dealing

with stream conduits, we shall consider a stream conduit as a structure with two members. Thus,

if s is a stream conduit, then the following are also conduits:

s.eot

s.value

Were s stream of items, then s.value would be an item conduit, and as such we could apply

CSP’s input and output operators to it directly. Were s a stream of a more complex nature, say

for example a stream of streams, s.value would comprise another stream conduit. Similarly, were

s a stream of vectors, then s.value would be a vector conduit.

To define s as a stream conduit to convey some type A we shall write:

s :: bAc

So, given a process P , which has s in its alphabet, we may write:

αP = {s :: bAc}

In Handel-C terms we can represent this pairing of conduits using a struct. To create a ‘one

off’ instance of a conduit named s, to carry a stream of integers, we could use the following:

struct
{

Item(Int) value;
Item(Bool) eot;

} s;

Alternatively, given the following preprocessor definition:

#define Stream(x) struct { x value; Item(Bool) eot; }

We could then define the above stream conduit s as follows:

Stream (Item(Int)) s;

3.7.3 Vector Conduits

A vector conduit is simply an array of other conduits. As with the stream conduit, the exact

structure of these conduits will depend on the type of the vector. For a simple vector of items,

43

CHAPTER 3. DATA REFINEMENT 44

each conduit will be a single CSP channel. We shall use subscripts to identify the conduits that

make up the vector. If v is a vector conduit of size n, then the following are also conduits:

v1, v2, . . . , vn

As before, were v a vector of items, vi would be a simple item conduit. However, in the case

of a vector of streams or a vector of vectors, we shall find vi shall be either a stream conduit or a

vector conduit correspondingly.

To define v as a vector conduit of size n, to convey some type A we shall write simply:

v :: 〈A〉n

So, given a process P , which has v in its alphabet, we may write:

αP = {v :: 〈A〉n}

In Handel-C terms vectors are represented as arrays of other conduit types. So, for example, a

vector of integers of size 5:

Item(Int) value[5];

3.7.4 Conduit Renaming

The CSP channel renaming operator shall be lifted to apply to conduits as well. Given a process

P with an alphabet containing a conduit c of some conduit type T .

αP = {c :: T}

We may produce a new process, P ′, which behaves in the same way as P , but operates on

conduit c′ instead of c. This can be specified using the renaming operator.

P ′ = P [c′/c]

The alphabet of P ′ will contain c′ in place of c. The type of the conduit will, however, be the

same.

αP ′ = {c′ :: T}

In this manner, we can rename whole stream, vector or combined conduits with a single sub-

stitution.

Conduit renaming in CSP terms will correspond to parameter passing in Handel-C. All conduits

on which a process wishes to communicate externally should be included in the parameter list for

that process. Consider the following process P:

44

CHAPTER 3. DATA REFINEMENT 45

macro proc P (in,out)

{

...

}

Here P is a process which communicates on two conduits which, from its point of view, are

named in and out. Should we wish to make use of this process, and have it communicate on

channels xin and xout we simply pass these as parameters:

P (xin, xout);

The above is the equivalent of the following in CSP:

P [xin/in, xout/out]

3.7.5 Conduit Hiding

Similarly, the CSP channel hiding operator shall be lifted to apply to conduits. Given a process P

with a conduit c in its alphabet:

αP = {c :: T}

The expression:

P\{c}

Describes a process where the conduit c only has scope within P . As with renaming, this applies

to the entire conduit, allowing us to rename whole stream, vector or combined conduits in a single

expression.

In Handel-C terms, channels, like variables, have scope limited to the context block within

which they are declared. Context blocks are the areas between curly brackets: { ... }. As such

conduit hiding is simply an issue of scope. Consider the following example:

macro proc P ()
{

Item(Int) c;
...

}
macro proc Q ()
{

Item(Int) c;
...

}

void main()
{

par

45

CHAPTER 3. DATA REFINEMENT 46

{
P();
Q();

}
}

Here we have two process, P and Q, which are composed together in parallel. Within each of the

processes a simple item conduit is declared, both of which happen to have the same name. They

are, however, two entirely separate and independent conduits because of their local scope. In CSP

terms this is analogous to composing processes P and Q in parallel, each of which have a hidden

conduit c. We can express this as follows:

P\{c} || Q\{c}

3.8 Produce

The produce process is fundamental to data refinement. It effectively describes the mapping

between transmission values, which may exist in the functional world, and the world of processes.

One way to model produce is as a function which returns processes. Specifically, we have a function

which inputs transmission values (items, streams, vectors and so on) and returns processes. Let us

consider such a function Prd. The function has the following type:

Prd :: Transmission a => a − > Process

We shall assume in all instances that Prd employs a single output conduit, out, however, the

structure of this conduit will vary depending on the particular flavour we are considering.

3.8.1 Nothing

The meaning of the special transmission value nothing will be largely defined by its relationship

with Prd.

Prd (Nothing) = SKIP

Strictly speaking, the value nothing does not exist in its own right, as we have a separate

constructor for each transmission value type. So, in effect, we shall require three definitions for

Prd nothing. However, they will all be fundamentally the same as the above.

3.8.2 Items

For simple, single item types (integers, characters, booleans and so on), the produce process is very

simple. This is depicted in Figure 3.13. Here the output conduit is just a single channel.

The definition is very straightforward:

46

CHAPTER 3. DATA REFINEMENT 47

PRD -item

Figure 3.13: The produce process for items.

Prd (Item a) = out ! a → SKIP

For example:

Prd (Item True) = out ! True → SKIP

Prd (Item 10) = out ! 10 → SKIP

The alphabet of Prd in item terms, given a value x of type A is as follows:

α (Prd (Item x)) = {out :: Ȧ}

In Handel-C terms item conduits should be implementable directly as individual channels. As

such we should be able to communicate using the standard CSP style communication operators

supplied in Handel-C. Thus, to produce a value x on item conduit out, we have simply:

out ! x;

3.8.3 Streams

The produce process for streams is depicted in Figure 3.14. As already noted, the output conduit

in this case is a pair of two other conduits. One conduit will produce the values of the stream, and

the other will be a simple channel used to signal EOT.

PRD
-x1, x2, ..., xn

-eot

Figure 3.14: The produce process for streams.

Let us first consider the simple case. For streams where the elements are simple items, each

item in the stream must be output in turn on the value channel, after which EOT must be signalled

on the eot channel.

Prd (Stream []) = out.eot ! any → SKIP

Prd (Stream (a : s)) = out.value ! a → (Prd s)

In a more general case, we do not necessarily know the structure of the values which the stream

is carrying. These may be simple items, but may also be streams or vectors. We can appeal to Prd

47

CHAPTER 3. DATA REFINEMENT 48

for each item, to ensure it is produced correctly. The member of the output conduit designated for

signalling eot (out.eot) will always be a simple channel no matter what, so we can signal EOT with

this directly through the event out.eot ! any. The other member of the output conduit (out.value)

will be a conduit in its own right, and each instance of Prd will output using this conduit. This is

achieved using channel renaming.

Prd (Stream []) = out.eot ! any → SKIP

Prd (Stream (a : s)) = (Prd a)[out.value/out]; Prd (Stream s)

We can also give an alternative definition in a less functional style, i.e. without employing tail

recursion. This might proceed as follows:

Prd (Stream s) =

#s

;

i = 1

(Prd si)[out.value/out]

 ; out.eot ! any → SKIP

The alphabet of Prd in stream terms, given stream containing values of type A is as follows:

α (Prd (Stream xs)) = {out :: bAc}

As an example, let us consider the act of producing a stream xs, with values bx1, x2, ..., xnc:

Prd bx1, x2, ..., xnc = (Prd x1)[out.value/out];

(Prd x2)[out.value/out];

...

(Prd xn)[out.value/out];

out.eot ! any → SKIP

Assuming the elements of xs are items (not streams or vectors), we can apply our definition of

Prd to produce each of the elements, and expand the above as follows:

Prd bx1, x2, ..., xnc = (out.value ! x1 → SKIP);

(out.value ! x2 → SKIP);

...

(out.value ! xn → SKIP);

out.eot ! any → SKIP

Finally, with a little simplification, we can arrive at the following:

Prd bx1, x2, ..., xnc = out.value ! x1 →
out.value ! x2 →
...

out.value ! xn →
out.eot ! any → SKIP

In Handel-C we have something like the following, for a simple stream of items:

48

CHAPTER 3. DATA REFINEMENT 49

macro proc SPRODUCE (out,n,values)
{

typeof (n) i;
for (i=0;i<n;i++)
{

out.value ! values[i];
}
out.eot ! True;

}

Alternatively, using seq replication, we have the following:

macro proc SPRODUCE (out,n,values)
{

seq (i=0;i<n;i++)
{

out.value ! values[i];
}
out.eot ! True;

}

3.8.4 Vectors

For vectors, we compose together n instances of the produce process in parallel, one for each item

in the vector. The output conduit here is an array of conduits. This is depicted in Figure 3.15.

PRD

-x1

-x2

...

-xn

Figure 3.15: The produce process for items.

As with the stream definition, let us first consider the simple case. Here the members of the

vector are simple items and can be output directly:

Prd (V ector v) =

#v

||
i = 1

outi ! vi → SKIP

A more general definition is given below. As with the stream version of Prd, the function Prd

is used recursively to return a process which will correctly produce each member of the vector.

Prd (V ector v) =

#v

||
i = 1

(Prd vi)[outi/out]

49

CHAPTER 3. DATA REFINEMENT 50

The alphabet of Prd in vector terms, given a vector containing values of type A is as follows:

α (Prd (V ector xs)) = {out :: 〈A〉n}

Let us again consider an example, a vector xs, with values 〈x1, x2, ..., xn〉n:

Prd 〈x1, x2, ..., xn〉n = (Prd x1)[out1/out] ||
(Prd x2)[out2/out] ||
... ||
(Prd xn)[outn/out]

As before, if we assume the elements of xs are simple items, we can expand the definitions of

Prd as follows:

Prd 〈x1, x2, ..., xn〉n = (out1 ! x1 → SKIP) ||
(out2 ! x2 → SKIP) ||
... ||
(outn ! xn → SKIP)

In Handel-C we have something like the following, for a simple vector of items:

macro proc VPRODUCE (out,n,values)
{

par (i=0;i<n;i++)
{

out[i] ! values[i];
}

}

3.9 Summary

In this chapter we have shown how data types in our specification can be refined to communication

mechanisms in our implementation. We have looked at two fundamental alternatives - the stream

and the vector, which correspond to sequential and parallel computation respectively.

50

Chapter 4

Process Refinement

4.1 Introduction

In this chapter we look at how functions in our specification are refined into processes in our

implementation. Not only do we need to consider how behaviour can be derived from individual

functions, but also we need to determine how application and composition of those functions is to

be translated into the process environment.

4.2 Feed

Consider some function f and some value x. In a functional language, we express the application

of function f to value x simply with the following:

f x

In effect the space here is our function application operator. Let us consider how we would

refine the above specification into processes. As we have seen in the chapter on data refinement,

the value x can be refined into a process Prd(x) which transmits that value on a channel (or more

generally a conduit). Let us assume we have some process F which refines function f . We require

some means of specifying that the output of Prd(x) should form the input to process F . This can

be achieved with the feed operator (written ¤), defined in [1]. We can therefore refine the above

specification using the feed operator as follows:

Prd(x) ¤ F

This is depicted in Figure 4.1, wherein both the conduit names, as well as the values carried

on those conduits are given.

The feed operator takes two processes, composes them together in parallel, and renames both

the output conduit of the first and the input conduit of the second to a new name, which is then

CHAPTER 4. PROCESS REFINEMENT 52

Prd(x) -r
out

x -r
in

a
F -f ar

out

Prd(x) -r
mid

x
F -

(Prd(x), F)

(Prd(x) ¤ F)

Figure 4.1: Refinement of the function application to process feeding.

hidden. Given the lifted concepts of CSP channel renaming and hiding, the definition can remain

the same regardless of the type of conduit (item, stream, vector or any combination thereof).

P ¤ Q = (P [mid/out] || Q[mid/in])\{mid}

Here the process P must be a producer only, and have no input. The composite process is a

producer.

This requires that out is the only member of the alphabet of P , in is a member of the alphabet

of Q, and that these conduits are of the same type. Or, more formally we have:

(αP = {out :: A}) ∧ (αQ = {in :: A, out :: B})

4.2.1 Vectors

Let us take a while to explore the use of the feed operator in the vector setting. Let us consider two

processes, PS and QS, each formed from a parallel composition of processes P and Q respectively.

The first process, PS, outputs a vector:

PS =

n

||
i = 1

P [outi/out]

We can define the alphabet of PS as follows:

αPS = {out :: 〈A〉n}

The second process, QS, inputs a vector.

QS =

n

||
i = 1

Q[ini/in]

We can define the alphabet of QS as follows:

αQS = {in :: 〈A〉n}

52

CHAPTER 4. PROCESS REFINEMENT 53

These processes satisfy the above conditions for use of the feeding operator. So, if the output

vector of PS is fed to QS, .i.e.

PS ¤ QS

We have the following process:

n

||
i = 1

P [outi/out]

 ¤

n

||
i = 1

Q[ini/in]

To illustrate the use of vector feeding, the above definition is equivalent to the following:

(PS [mid/out] || QS [mid/in]) \{mid}

To write this out in full we have the (somewhat unwieldy!) definition:

n

||
i = 1

P [outi/out]

 [mid/out] ||

n

||
i = 1

Q[ini/in]

 [mid/in]

 \{mid}

Note carefully the lifted use of CSP’s renaming operator here. In the definition above, we see the

expressions [mid/out] and [mid/in]. Here whole vector conduits are being renamed. By applying

these renaming operators, the above expression can be simplified to arrive at the following:

n

||
i = 1

P [midi/out]

 ||

n

||
i = 1

Q[midi/in]

 \{mid}

Note in the above the lifted use of CSP’s hiding operator. The hiding operator is used above

to hide an entire vector conduit, mid. All the component conduits that make up this vector (mid1

up to midn) will be hidden.

When we consider vector feeding between processes of the likes of PS and QS, we may observe

that feeding between the processes as whole is equivalent to composing together in parallel n

instances of a process which feeds between the component processes. In other words:

n

||
i = 1

P [outi/out]

 ¤

n

||
i = 1

Q[ini/in]

 =

n

||
i = 1

P ¤ Q

4.3 Process Refinement

Given that we now have a definition of a feed operator that operates on processes, we are now

able to give a formal definition of process refinement. Let us consider a function f , which takes

53

CHAPTER 4. PROCESS REFINEMENT 54

in values of type A and returns values of type B. We shall assume the data refinement step has

already been performed, such that A and B are both types of some transmission value:

f :: A → B

Let us now consider a potential refinement for f , a process F . This should have an input

conduit suitable for receiving transmission values of type A, and an output conduit suitable for

sending transmission values of type B.

αF = {in :: A, out :: B}

The operator ≺ denotes a process refinement, where the left hand side is a function, and the

right hand side a process. To state that f is refined by F , or in other words, the process F is a

valid refinement of the function f , we may write:

f ≺ F

To prove this is a valid refinement, we require the following condition to hold:

∀x :: A • (Prd x) ¤ F = Prd (f x)

That is to say, for all values x of type A, the process formed by producing x and feeding this to

F is equal to the process formed by producing the result of f applied to x directly. This equality

here is strictly speaking an algebraic equivalence, although in simple terms we can consider it as

engaging in the same events, or, in other words, producing the same output.

4.4 Pipe

The pipe operator is writtenÀ, and is introduced in [42]. The pipe operator, like the feed operator,

takes two processes, composes them together in parallel, and renames both the output conduit of

the first and the input conduit of the second to a new name, which is then hidden. Given the lifted

concepts of CSP channel renaming and hiding, the definition can remain the same regardless of

the type of conduit (item, stream, vector or any combination thereof).

P À Q = (P [mid/out] || Q[mid/in])\{mid}

This requires that out is a member of the alphabet of P , in is a member of the alphabet of Q,

and that these conduits are of the same type. Or, more formally we have:

(out ε αP) ∧ (in ε αQ) ∧ ∃T • (in :: T ∧ out :: T)

The pipe operator in CSP refines function composition (◦) in our specifications. Consider the

following functional specification:

54

CHAPTER 4. PROCESS REFINEMENT 55

h = g ◦ f

Here we have the following types:

f :: A → B

g :: B → C

h :: A → C

Let us assume we have some process P which refines f and some process Q which refines g.

These processes should therefore have the following alphabets:

αP :: {in :: A, out :: B}
αQ :: {in :: B, out :: C}

In our functional specification, the output of function f becomes the input to function g.

Similarly in our process refinement we wish to state that the output of process P forms the input to

process Q. We can use the pipe operator for this, and as such we can then refine our compositional

specification h to the following:

P À Q

So we can say:

(g ◦ f) ≺ (P À Q), if (f ≺ P ∧ q ≺ Q)

This is illustrated in Figure 4.2, wherein both the conduit names, as well as the values carried

on those conduits are given.

-r
in

x
P -r

out

f x -r
in

y
Q -r

out

g y

-r
in
x

P -r
mid

f x
Q -r

out

g (f x)

(P , Q)

(P À Q)

Figure 4.2: Refinement of the composition operator to process piping.

The CSP definition of the pipe operator - in terms of the parallelism operator, with some

channel renaming/hiding - carries through to our Handel-C implementation. As noted in Sections

3.7.4 and 3.7.5, conduit renaming and hiding correspond to parameter passing and locally scoped

conduits in Handel-C. So, given Handel-C definitions for processes P and Q, we could specify the

piping together of these two processes as follows:

55

CHAPTER 4. PROCESS REFINEMENT 56

macro proc PIPE (in,out)
{

// (definition for mid)
par
{

P (in,mid);
Q (mid,out);

}
}

4.5 Pipelining

In Section 4.4 we saw how functional composition can be refined into process piping. This scheme

for two functions/processes can also be generalised to n functions/processeses as shown in [2]. The

functional composition operator is a binary operator like any other. We have the following type:

(◦) :: (B → C) → (A → B) → (A → C)

As a special case of the above, quite general, type definition, we can of course deal with functions

which both input and output values of the same type. So given some function f :

f :: A → A

So the expression (f ◦ f) is a function which is also of type (A → A). We can, in fact, compose

f with itself ad nauseum:

f ◦ f ◦ f ◦ ... ◦ f

Expressions of this form can instead be given as a fold (see Section 5.3) with the composition

operator. We have:

fold (◦) [f, f, ..., f] = f ◦ f ◦ ... ◦ f

Or alternatively, to use the infix form of fold. we have:

(◦) / [f, f, ..., f] = f ◦ f ◦ ... ◦ f

Evidently, we may not always be simply re-applying the same function over and over. So long

as all the functions in our composition have the same type:

f1, f2, ..., fn :: A → A

We can then give the following:

(◦)/ [f1, f2, ..., fn] = f1 ◦ f2 ◦ ... ◦ fn

56

CHAPTER 4. PROCESS REFINEMENT 57

One common way to create a series of n functions which have the same type but perform a

differing action is to ‘specialise’ each with an additional parameter. Consider the following function

f :

f :: B → A → A

Here we have a function which, once supplied with a value of type B will then take in a value

of type A and return a value of type A. We can then map f to a list of values of type B to give

us our list of composable functions. This results in the following pattern:

(◦) / (map f [x1, x2, ..., xn]) = (f x1) ◦ (f x2) ◦ ... ◦ (f xn)

In process terms, each occurrence of the composition operator (◦) will be refined to an applica-

tion of the process piping operator (À). In the simple case, where we are composing n instances

of the same function f , given some process P which refines f we have the following:

(◦) / [f, f, ..., f] ≺

n

À
i = 1

P

 , if f ≺ P

In the more general case, we have to take into the account that the pipe operator and compo-

sition operators work in opposite directions.

(◦) / [fn, fn−1, ..., f2, f1] ≺

n

À
i = 1

Pi

 , if f1..n ≺ P1..n

Alternatively we may wish to introduce the function reverse here:

(◦) / (reverse [f1, f2, ..., fn]) ≺

n

À
i = 1

Pi

 , if f1..n ≺ P1..n

Similarly for the parameterised case we have:

(◦) / (map f (reverse [x1, x2, ..., xn])) ≺

n

À
i = 1

P (xi)

 , if (f x) ≺ P (x)

To illustrate this, the construction of a pipeline of processes is depicted in Figure 4.3.

In Handel-C terms, a basic pattern for pipelining can be represented by the following:

macro proc PIPELINE (n, mids, P)
{

par (i=0;i<n;i++)
{

P (mids[n],mids[n+1]);
}

}

57

CHAPTER 4. PROCESS REFINEMENT 58

-r
in

x
P1

-r
out

f1 x -r
in

x
P2

-r
out

f2 x ... -r
in

x
Pn

-r
out

fn x

-r
in
x

P1
-r

mid1
P2

-r
mid2

... -r
midn−1

Pn
-r

out

(P1, P2, ..., Pn)

n

À
i = 1

Pi

Figure 4.3: Refinement of composed functions to pipelined process.

Alternatively, where we wish to parameterise each process with a different value, we have:

macro proc PIPELINE1 (n, channels, values, P)
{

par (i=0;i<n;i++)
{

P (mids[n],mids[n+1],values[n]);
}

}

4.6 Recursion Unrolling

Functional definitions are often given recursively. Although this is a useful construct in a specifica-

tion, we are not typically able to implement recursive algorithms directly in our target environment

(the FPGA). In terms of list processing functions, there are, broadly speaking, two forms of recur-

sion.

4.6.1 Tail Recursion

The first, tail recursion, is illustrated by the example below:

insert a [] = [a]

insert a (x : xs) = if a < x

then a : x : xs

else x : insert a xs

This kind of recursion is easier to deal with as computation proceeds progressively as the input

list is consumed. In CSP we are quite at liberty to specify processes recursively, so we can provide

the following analogous definition:

58

CHAPTER 4. PROCESS REFINEMENT 59

INSERT (a) = in.eot ? any → (out.value ! a → out.eot ! True → SKIP)

|

in.value ? x →

out.value ! a → out.value ! x → COPY

<| a < x |>
out.value ! x → INSERT (a)

This definition is, however, not directly implementable in hardware. Thankfully tail recursion

is easily refined to iteration, so we can replace the above definition with a simple iteration, as

demonstrated in Figure 4.4. This iterative version can be implemented almost directly in Handel-

C. The Handel-C implementation for this process is also given in Figure 4.4.

macro proc INSERT (in,out,a)

{

typeof(a) x;

Bool eot;

eot = False;

while (!eot)

{

prialt

{

case in.eot ? eot:

out.value ! a;

out.eot ! True;

break;

case in.value ? x:

if (a<x)

{

out.value ! a;

out.value ! x;

COPY (in,out,eot);

}

else

{

out.value ! x;

}

break;

}

}

}

INSERT (a) =

µ X•
in.eot ? any → (out.value ! a → out.eot ! True → SKIP)

|

in.value ? x →

out.value ! a → out.value ! x → COPY

<| a < x |>
out.value ! x → X

Figure 4.4: The Handel-C and CSP definitions of the process INSERT.

4.6.2 Head Recursion

The other form of recursion in list terms is head recursion. This usually presents more of a problem

when it comes to refinement as it generally requires the entire input list to have been consumed

before any actual computation takes place. A good example of this is the function foldr - see

Section 5.3.

59

CHAPTER 4. PROCESS REFINEMENT 60

foldr (⊕) e [] = e

foldr (⊕) e (x : xs) = x ⊕ (foldr (⊕) e xs)

Although the head recursive nature of foldr here many not be immediately apparent, consider

the application of the (⊕) operator. We cannot fully apply (⊕) until we have reached the end of

the list, so in effect the computation begins at the end of the list and proceeds backwards. The

informal definition for foldr may help to clarify this:

foldr (⊕) e [x1, x2, ..., xn] = x1 ⊕ (x2 ⊕ (...⊕ (xn ⊕ e)))

We can provide an alternative definition for foldr which may also help to highlight its head

recursive style. Here we gradually accumulate the result in the e parameter by progressing through

the list backwards, applying (⊕) at each step.

foldr (⊕) e [] = e

foldr (⊕) e (xs ++ [x]) = foldr (⊕) (x ⊕ e) xs

Sometimes it may be acceptable to implement a buffering scheme to deal with this head recur-

sion. Another approach, perhaps more efficient, may be to attempt to remove the head recursion

from the specification via some program transformation. For example, in many cases foldr, which

is head recursive, can be replaced with foldl, its tail recursive counterpart, following a little ma-

nipulation of the specification. The relationship between these two functions is explored further in

Section 5.3.

4.6.3 Pattern Matching

Pattern matching is a convenient way to specify possible input cases in a functional specification.

Where pattern matching is applied to list which are inputs to a function, and these lists are

refined to streams in the implementation, we shall need to think carefully about how they are

to be represented. Some examples of the sorts of pattern matching expressions for lists we may

encounter are given in Figure 4.5.

[] An empty list

[x] A list containing exactly one item, x.

[x, y] A list containing exactly two items, x and y.

(x : xs) A list containing at least one item x.

(x : y : xs) A list containing at least two items x and y.

Figure 4.5: Typical pattern matching expressions on lists.

Let us consider how these constructs might be refined to a process implementation in stream

terms.

60

CHAPTER 4. PROCESS REFINEMENT 61

Delayed Signalling of EOT

Consider the refinement of some part of a function which uses a pattern match involving the empty

list. In a stream refined process, broadly speaking, this condition will correspond to checking the

EOT channel of the appropriate stream. The signalling of EOT will denote that no further values

are to be transmitted on the corresponding stream. So, once the receiving process has been given

notification of EOT, it knows it will not be required to consume anything more from that stream.

The reverse statement is, however, not necessarily true. That is to say, when EOT is not yet

signalled, the consuming process should not assume that there are more values to be received from

that stream. There may sometimes be a gap between a sending process transmitting the last value

in a stream, and the signalling of EOT.

This issue can be resolved as long as the consumer adheres to the CSP specification given in

Section 3.3.3. That is to say, the consumer must at any point (before the stream has ended) be

willing to accept either a value or the EOT message. In effect it should wait indefinitely for either of

these to occur. This can be achieved with CSP’s choice operator (or Handel-C’s prialt construct).

The consumer must never assume that EOT not being signalled definitely means another value

can be received.

Peeking without Consuming

Another important issue to consider is that in CSP style communication, as implemented in Handel-

C, we cannot ‘peek’ at an input without actually consuming from it. This kind of ‘peeking’

behaviour is, however, commonplace in functional specifications. This is well illustrated by the

function merge, as used in the merge sort algorithm:

merge xs [] = xs

merge [] ys = ys

merge (x : xs) (y : ys) = if x < y

then x : merge xs (y : ys)

else y : merge (x : xs) ys

In the third statement of this definition the pattern matching on the left hand side asserts that

there is at least one item available from each of the two input lists. These items are then compared,

and the lower of the two is output. The higher item, however, is effectively put back into the list it

came from before the function recurses. Whilst this does not present any particular problem in the

world of functions, in process terms this kind of behaviour certainly is an issue that requires some

thought. In our model of CSP communication, where we assume all channels to be uni-directional,

we cannot simply ‘put back’ a value that has been received on a channel in this way.

One possibility would be to add extra behaviour to sending processes to deal with the possi-

bility of values being sent back by the receiver via some kind of return channel. However, this is

61

CHAPTER 4. PROCESS REFINEMENT 62

probably not the best way to handle this issue. For one thing, adding channels will have a cost in

hardware terms and it is likely many of these return channels will go unused - only certain receiving

processes are likely to employ this peeking behaviour. Additionally, as the function merge above

demonstrates, generally values which are peeked at but not consumed in this way are refused on a

”not yet” rather than a ”not at all” basis. In other words, they are often not rejected altogether,

but instead are consumed at some later stage. The introduction of a return channel mechanism

could create a kind of ping pong behaviour between the sender and receiver, which is likely to be

highly inefficient.

A simpler, and arguably more efficient solution would be to add some kind of buffering to the

receiving process. In this way we need not add any more communication overhead, and we need

not complicate the sending process in any way. Conceptually, this buffer would act as an interface

between the receiving process and the stream from which it is consuming. Rather than simply

reading from the stream, the receiving process would be furnished with two possible operations.

A peek operation would attempt to fill the buffer with the required number of items, which may

result in one or more values being received from the stream. Where this number of items is already

present in the buffer, then no actual communication with the stream would be required. A consume

operation would effectively remove items from the buffer.

The size of the buffer required for a given stream can be determined from the depth of the

pattern matching for the corresponding list in the functional specification. By depth here we mean

the maximum number of items extracted from that list in any pattern match for that list in the

definition. As an example, for the merge function above, the required buffer size is just one item

for each of the two input lists. The ‘deepest’ pattern match is the (x : xs) for the first list and

(y : ys) for the second list. In each of these expressions we are only attempting to match one item.

Let us also consider the function bpass. This performs a single pass of the bubble sort algorithm.

We can define this as follows:

bpass [] = []

bpass [x] = [x]

bpass (x : y : ys) = if x < y

then x : bpass (y : ys)

else y : bpass (x : xs)

Here the pattern matching depth is two - in the third statement we attempt to match two items

from the input list, with the expression (x : y : ys). Thus in a stream process refinement of this

function we would a buffer size of two.

62

CHAPTER 4. PROCESS REFINEMENT 63

4.7 Lazy Evaluation

In the functional setting we are not particularly concerned with the fate of any part of an input

list we do not choose to consume. Parts of intermediate data structures which are not required to

compute the eventual output can be entirely ignored without any cause for concern in a functional

program. This is, of course, a direct result of lazy evaluation - we only calculate that which we

absolutely need to in order to produce the end result. A good example of this is given by the take

function. This inputs a list and returns just the first n elements. Consider the following functional

expression:

take 20 (map (∗2) [1..1000000])

Here the expression [1..1000000] generates a list of all numbers from one to a million. We are

then applying map (see Section 5.2) with the function (∗2) to this list - so we are in effect doubling

every item. Finally, we are requesting that we take just the first 20 results. The question here is,

of course, how many calculations are made - that is to say how many times is the multiplication

operator applied. Is it twenty or one million? Whereas an imperative equivalent of this algorithm

might make a million calculations, lazy evaluation means that the functional version makes only

twenty - the minimum required to produce the desired output.

Moreover, functional programs allow us to deal with infinite lists. The enumeration given above

does not have to have an upper limit - by removing this we are effectively requesting an infinite list

of ascending integers. Thus the expression below actually results in the same number of calculations

and the same result, whereas arguably an imperative equivalent may never produce a result:

take 20 (map (∗2) [1..])

We may find it important in certain cases to be reassured that this model of lazy evaluation

can be preserved in our process implementations. Certainly for the above example, were we to

discover that the process implementation performed one million calculations we would definitely

have cause for concern. We could refine the above definition to a simple network of processes:

ENUM(from, to) = if (from > to)

then out.eot ! True → SKIP

else out.value ! from → ENUM(from + 1, to)

DOUBLE = in.eot ? any → out.eot ! True → SKIP

|
in.value ? x → out.eot ! (x ∗ 2) → DOUBLE

TAKE(n) = if (n == 0)

then out.eot ! True → SKIP

else in.value ? x → out.value ! x → TAKE(n− 1)

NETWORK = ENUM(1, 1000000) ¤ DOUBLE À TAKE(20)

63

CHAPTER 4. PROCESS REFINEMENT 64

This is depicted below:

ENUM
(1, 20)

- DOUBLE - TAKE
(20)

-

It should hopefully be clear that the characteristics of lazy evaluation are, to an extent, pre-

served by this refinement. After twenty steps the output of the network as a whole will signal

EOT. We could construe from this that the computation as a whole has completed. However -

although the last process in the pipeline, TAKE, will then terminate, the other two processes will

continue to run, waiting indefinitely to perform communications which will never actually occur1.

Of course, this issue may be entirely inconsequential, it really depends on the setting in which the

implementation is placed.

It is important to bear in mind the potential side effects of these kinds of refinements in the

world of processes. Consider as an example the following two functions.

dup a = (a, a)

fork f (a, b) = (f a, f b)

Then consider the following expression which takes advantage of these functions:

fork (take 5) (take 10) (dup [1..20])

The implication of this is that we wish to generate the integers between one and twenty in a

list, and then make two copies of that list. In the first copy of the list we wish to discard all but

the first five items, and in the second list all but the first ten. Thus our result should be equivalent

to:

([1..5], [1..10])

As dup in our specification above is operating on lists, we may choose to provide a stream

refinement for it in our implementation. In this context it will have a single stream as input, and

will, from this, be required to produce two identical streams as output. A possible definition is

given below:

SDUP = in.eot ? any → out1.eot ! True → out2.eot ! True → SKIP

|
in.value ? x → out1.value ! x → out2.value ! x → SDUP

Let us consider this process composed together into a network refining our functional specifi-

cation.
1You almost feel sorry for them, don’t you?

64

CHAPTER 4. PROCESS REFINEMENT 65

ENUM
(1, 20)

- SDUP

-

-

TAKE
(5)

TAKE
(10)

-

-

So, we would expect to have two streams as output - one containing the values (1..5) and

another containing the values (1..10). Actually, given the definition of SDUP as above, this is

not, in fact, what will happen. After consuming five values, the upper TAKE process will stop

consuming on its input conduit, which corresponds to the conduit out1 in the process SDUP . The

definition of SDUP is such that, upon receiving each value from its input, it will first attempt to

output it on out1, then on out2, and then repeat. Whilst the receiving end of out1 is unwilling

to communicate, the process will wait there indefinitely. So in effect, once one TAKE process

stops consuming, the other will no longer be fed. So actually our network as a whole will output

five values on each output stream before becoming deadlocked. The additional five values required

from the second TAKE process will never appear.

This issue raises a few questions. Should TAKE (and similar processes) be responsible for

consuming the entirety of its input stream, including the segment it merely discards? A definition

which satisfies this additional criteria is given below:

TAKE(n) = in.eot ? any → out.eot ! True → SKIP

|

in.value ? x →

if (n == 0)

then TAKE(n)

else out.value ! x → TAKE(n− 1)

In this version we continue to consume from the input stream until EOT is signalled for that

conduit, at which point we also then signal EOT on the output conduit. This definition arguably

does not satisfy the criteria of lazy evaluation - EOT will not be signalled on the output conduit

until the entirety of the input stream has been consumed. We could, of course, supply a different

definition that signals EOT at the point at which n reaches zero. Again though, whether or not lazy

evaluation is implemented by this behaviour is arguable. Although the output will be produced

in a minimal number of steps as we would hope, the network as a whole will continue to operate

after this, potentially indefinitely. Is this desirable?

Another alternative strategy for addressing this issue is the possibility of EOT signalling being

bi-directional. Currently the sender has a mechanism for informing the receiver that it will not

produce any more values, but there is no mechanism for the receiver to notify the sender that it is

not prepared to consume any more. So, in addition to the EOT (end of transmission) channel, we

might also consider an EOR (end of reception) channel. Whereas we may want to bear this option

in mind for certain specific scenarios, we certainly do not which to add this EOR mechanism to

65

CHAPTER 4. PROCESS REFINEMENT 66

every single stream - it will generally go unused, which is potentially very wasteful.

So, for general purposes, in the absence of the previous two solutions, we pass the responsibility

for resolving this issue to the sending process. That is to say, any sender which outputs to more than

one receiver in this fashion should not allow the cessation of one receiver to affect the transmission

to the other(s).

Considering our process SDUP , in effect we shall require that the two output streams are

asynchronous of each other and therefore asynchronous with respect to the input stream. As

always, we can translate from a synchronous communication to an asynchronous one via buffering.

We effectively then require one buffering process per output stream. This process should always be

willing to transmit, assuming there is data in the buffer, and always be willing to receive, assuming

there is unused capacity in the buffer. The input stream is then managed by a process which reads

a value at a time, and then attempts to pass this value onto each of the buffer processes, accepting

that it may fail.

4.8 Conversions

We may often find it useful to have processes which ”convert” between our different data refine-

ments. For example, a process which inputs a stream and outputs a vector, as well as one which

does the reverse, inputs a vector and outputs a stream.

In fact, these conversions are specific cases of more general schemes; specialised refinements

of map. We simply use a refinement of the function id for the characteristic function f . See

Section 5.2.3 and Section 5.2.4 for more details.

4.9 Summary

We have seen how functions in our specification can be refined to processes in our implementation.

A formal criteria for valid refinement to a process has been given which allows us to reassure

ourselves that our implementation correctly satisfies the requirements of our specification. We

have shown how function application can be refined to the feed operator in the process world. We

have also shown how we can translate from the combination of components in the functional setting

(composition) to the equivalent in the process setting (pipelining). With these basic building blocks

in our toolbox we are now prepared to tackle a wide range of refinement tasks.

66

Chapter 5

Refinement of Key Higher Order

Functions

5.1 Introduction

Two particular higher order functions, map and fold, are key to many functional algorithms and

as such it is necessary to thoroughly explore their refinement to processes.

5.2 Map

Let us consider the function map. Given a function f of type A → B, map f has type:

[A] → [B]

Informally, it has the following definition:

map f [x1, x2, ..., xn] = [f x1, f x2, ..., f xn]

We may occasionally find it useful to employ map as a binary infix operator. To accomplish

this, we are presented with two possibilities. First, the Haskell convention of surrounding a function

name with single quotes:

f ‘map‘ xs = map f xs

Secondly, the BMF map operator:

f ∗ xs = f map xs

67

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 68

5.2.1 Streams

The corresponding stream refinement of map f , smap f , has type bAc → bBc. An informal

definition of smap is a simple analogy of map:

smap f bx1, x2, ..., xnc = bf x1, f x2, ..., f xnc

Thus to state that smap is a valid refinement of map we require the following diagram to

commute.

[A] [B]

bAc bBc

6
absS

6
absS

-map f

-smap f

Given a stream of length n containing items x1 up to xn we can construct a proof that the

diagram will commute as follows:

(map f ◦ absS) bx1, x2, ..., xnc {id}
= map f [x1, x2, ..., xn] {def. absS}
= [f x1, f x2, ..., f xn] {def. map}
= absS bf x1, f x2, ..., f xnc {def. absS}
= absS (smap f bx1, x2, ..., xnc) {def. smap}
= (absS ◦ smap f) bx1, x2, ..., xnc {def. ◦}

This highlights an important equivalence which will be useful in later proofs:

map f ◦ absS = absS ◦ smap f

We shall term this smap− r1. This property can be of particular benefit to us, as it allows us

to translate commonly used map laws in terms of smap. Take for example map distributivity.

(absS ◦ smap (f ◦ g)) bx1, x2, ..., xnc
absS b(f ◦ g) x1, (f ◦ g) x2, ..., (f ◦ g) xnc {def. smap}
[(f ◦ g) x1, (f ◦ g) x2, ..., (f ◦ g) xn] {def. absS}
map (f ◦ g) [x1, x2, ..., xn] {def. map}
(map f ◦ map g) [x1, x2, ..., xn] {map distributivity}
(map f ◦ map g ◦ absS) bx1, x2, ..., xnc {def. absS}
(map f ◦ absS ◦ smap g) bx1, x2, ..., xnc {smap− r1}
(absS ◦ smap f ◦ smap g) bx1, x2, ..., xnc {smap− r1}

Form this we can assert that:

smap (f ◦ g) = smap f ◦ smap g

Thus map distributivity holds for smap.

68

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 69

Process Refinement

SMAP
-x1, x2, ..., xn

-eot

-
f x1, f x2, ..., f xn

-eot

Figure 5.1: The map process for streams.

A process implementing the functionality of map f in stream terms should input a stream of

values, and output a stream of values with the function f applied. This is depicted in Figure 5.1.

Simple Case Definition

To illustrate this behaviour, let us consider a process candidate for SMAP in the simple case that

the members of the stream are items. Here, at each stage, if the input eot channel is willing to

communicate, we receive a message from it, echo the message to the output eot channel, and then

skip. If the input value channel is willing to communicate, we receive a single value from it, and

output the result of f applied to that value on the output value channel, then repeat. In this

version, the parameter f can be passed as a function parameter to SMAP .

SMAP (f) = µX • in.eot ? any → out.eot ! any → SKIP

|
in.value ? x → out.value ! (f x) → X

General Case Definition

In the more general case the handling of the eot channels will be the same. However, the handling

of the value conduit will vary depending on the type of the elements of the input and output

stream. In the simple case above, the process inputs an item and outputs an item at each stage.

In practice, the process might be required to input and output whole streams or vectors at each

stage, and the input and output types may differ. Given map is polymorphic, it has no knowledge

about the structure of individual items in the list - only the function f passed as a parameter to

map will have the required know how to be able to input and output such values. As such, it is

necessary to pass a refinement of the original function f as a process, rather than as a function.

Thus the process F will be responsible for reading from the input value conduit of the input stream

(which may itself be a stream or vector), and outputting to the output value conduit, with the

function f applied. Note the use of process choice (2) here in place of prefix choice (|) earlier. This

substitution was necessary given the level of abstraction placed around the input value conduit -

at this level, we no longer have two visible events to choose between.

69

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 70

SMAP (F) = µX • in.eot ? any → out.eot ! any → SKIP

2

F [in.value/in, out.value/out];X

Given a process F , with alphabet:

αF = {in :: A, out :: B}

The alphabet of SMAP (F) can be defined as follows:

αSMAP (F) = {in :: bAc, out :: bBc}

Proof

To prove this definition of the process SMAP is a valid refinement of the function smap, we shall

require that the following diagram commutes:

bAc bAc

Process Process

?
Prd

?
Prd

-
smap f

-
¤ SMAP (F)

In other words, we require that the following equivalence holds for any stream s, given a process

F which is a valid refinement of the function f :

(Prd s) ¤ SMAP (F) = Prd (smap f s)

The proof of this proceeds as follows. Firstly let us consider the case of the empty stream. We

start by substituting the empty stream for s in the above expression.

(Prd (Stream [])) ¤ SMAP (F)

Now let us expand our definition of SMAP into the above.

(out.eot ! any → SKIP) ¤

(µ X • (in.eot ? any → out.eot ! any → SKIP)

2

F [in.value/in, out.value/out];X)

Following this we may find it useful to apply the definition of the feed operator (¤):

70

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 71

((mid.eot ! any → SKIP) ||
(µX • (mid.eot ? any → out.eot ! any → SKIP)

2

F [mid.value/in, out.value/in];X))\{mid}

Given the willingness of the two processes to communicate on mid.eot, it is clear which branch

of the choice will be followed. This leads to:

(mid.eot ! any → out.eot ! any → SKIP)\{mid}

Given that mid is hidden, from the outside world, this is equivalent to the following:

out.eot ! any → SKIP

Which is the same as the definition of Prd when applied to an empty stream:

Prd (Stream [])

Finally, given that smap applied to an empty stream will result in an empty stream, we have

the following:

Prd (smap f (Stream []))

In the case of the non-empty stream, we will need to prove the equivalence:

(Prd x) ¤ F = Prd (f x)

Where x is any member of the input stream. This equates to F being a valid refinement of f ,

which we have already stated as a requirement for SMAP (F) to be a valid refinement of smap f .

Thus we can claim SMAP (F) to be a valid refinement of smap f in all cases.

Handel-C Implementation

Given that we now have a valid refinement in CSP terms for map, let us consider how we may

implement it in Handel-C.

First, let us consider the simple case where we are dealing with a stream of items. Here we

have a Handel-C macro proc, parameterised with the input stream, the output stream, and the

expression f. The expression f here could be defined as a Handel-C macro expr.

The process hinges around a loop which terminates when the variable eot is set to true. At

each step of the loop, we wait until either the eot or value channel of the input stream is willing

to communicate. If the eot channel is willing to communicate, we consume the input from it and

store it in the variable eot, remembering also to output an EOT message for the output stream.

71

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 72

macro proc SMAP_SIMPLE (streamin,streamout,f)
{

Bool eot;
messagetype (streamin) x;
eot = False;
do
{

prialt
{
case streamin.eot ? eot:

streamout.eot ! True;
break;

case streamin.value ? x:
streamout.value ! f(x);
break;

}
} while (!eot)

}

Figure 5.2: The simple case definition of the process SMAP.

If the value channel of the input stream is willing to communicate, we consume a value from the

input stream, and output that value with f applied to it on the output stream. The definition is

given in Figure 5.2.

More generally we have the following process. Here, the function f is refined to a process F,

rather than an expression. When the eot channel of the input stream is not willing to communicate,

we engage instead F, passing it as parameters the value conduit of the input and out streams. This

is given in Figure 5.3.

macro proc SMAP (streamin,streamout,F)
{

Bool eot;
eot = False;
do
{

prialt
{
case streamin.eot ? eot:

streamout.eot ! True;
break;

default:
F (streamin.value,streamout.value);
break;

}
} while (!eot)

}

Figure 5.3: The general case definition of the process SMAP.

This behaviour may incur a potential problem if there is some delay between the feeding process

72

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 73

outputting the last component of the stream and EOT being signalled. It may then occur that at

some point in time, the eot conduit is not yet willing to communicate, but all the values in the

stream have already been transmitted. To cope with this the process F here will require some kind

of pass-through mechanism. That is to say, if the value channel (or conduit) of the input stream

is not willing to communicate, the process F must not wait indefinitely for it.

Handel-C’s prialt statement has provision for this. This has two behaviours depending on the

presence or lack of a default case. Where no default case is present, execution will wait until one

of the specified channels is willing to communicate. Where a default case is present, the choice is

made without waiting. If none of the specified channels are willing to communicate immediately,

execution will proceed instead to the default clause.

As an example, if we wish to use our generic version of SMAP to implement a map operation on

a simple stream of items, applying some function f , our definition for the process F should be as

shown in Figure 5.4.

macro proc F (conduitin,conduitout)
{

prialt
{
case conduitin ? x:

conduitout ! f (x);
break;

default:
break;

}
}

Figure 5.4: The process F.

5.2.2 Vectors

Taking again the example of map f , we have a refinement in vector terms called vmap f . This has

type:

〈A〉n → 〈B〉n

In a similar fashion to smap, an informal definition is analogous to that of map.

vmap f 〈x1, x2, ..., xn〉n = 〈f x1, f x2, ..., f xn〉n

Strictly speaking we should write vmap as vmapn, as we are required to parameterise the

function with the size of the vector used, however, we will generally omit the subscript where the

value is clear from context. Proof that this is a valid refinement of map requires, as before, the

following diagram to commute.

73

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 74

[A] [B]

〈A〉n 〈B〉n

6
absV

6
absV

-map f

-vmapn f

We shall see that the proof is analogous to that of smap.

(map f ◦ absV) 〈x1, x2, ..., xn〉n {id}
= map f [x1, x2, ..., xn] {def. absV }
= [f x1, f x2, ..., f xn] {def. map}
= absV 〈f x1, f x2, ..., f xn〉n {def. absV }
= absV (vmap f 〈x1, x2, ..., xn〉n) {def. vmap}
= (absV ◦ vmap f) 〈x1, x2, ..., xn〉n {def. ◦}

Process Refinement

-x1

-x2

...

-xn

V MAPn

-f x1

-f x2

...

-f xn

Figure 5.5: The map process for vectors.

So we have established that the functionality of map f in a list setting is modeled by vmap f

in the vector setting. We should now consider a process refinement of vmap f . We shall require a

process F , which is a valid refinement of our function f . The implementation of V MAP can then

proceed by composing together n instances of F together in parallel, and directing an item from

the input vector to each instance for processing. We should also ensure that the output of each

instance of F can proceed along a separate conduit in the output vector. In CSP we have:

V MAPn(F) =

n

||
i = 1

F [ini/in, outi/out]

Given a process F , with alphabet:

αF = {in :: A, out :: B}

The alphabet of V MAPn(F) can be defined as follows:

αV MAPn(F) = {in :: 〈A〉n, out :: 〈B〉n}

74

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 75

Proof

To prove this is a valid refinement, we shall require that the following diagram commutes:

〈A〉n 〈A〉n

Process Process

?
Prd

?
Prd

-
vmap f

-
¤ V MAPn(F)

In other words, we require that the following equivalence holds for any vector v of length n,

given a process F which is a valid refinement of the function f :

(Prd v) ¤ V MAPn(F) = Prd (vmap f v)

Expanding the definitions of Prd and V MAP , the left hand side of the above expression is

equivalent to:

#v

||
i = 1

(Prd vi)[outi/out]

 ¤

n

||
i = 1

F [ini/in, outi/out]

Given as we have already stated that the length of the vector v is equal to n, we may slightly

modify this definition to create the following:

n

||
i = 1

(Prd vi)[outi/out]

 ¤

n

||
i = 1

F [ini/in, outi/out]

Given the law previously defined for feeding between vector processes, we can simplify to the

following:

#v

||
i = 1

(Prd vi) ¤ F [outi/out]

Given the requirement that F is a valid refinement of f , then the following equivalence must

hold for any item x of the appropriate type.

(Prd x) ¤ F = (Prd (f x))

So the previous definition becomes:

#v

||
i = 1

(Prd (f vi))[outi/out]

75

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 76

This is clearly an instance of the vector version of Prd, and as f is applied to every item in the

vector, it is evident the above is equivalent to:

Prd (vmap f v)

This is the right hand side of the original expression, thus proving that the previous diagram

commutes.

Handel-C Implementation

We may now turn our attention to providing a definition in Handel-C for the behaviour of this

process. Here we can employ Handel-C’s enumerated par construct to place n instances of the

process F together in parallel. Each instance is passed the corresponding conduits from both the

input and output conduits. This definition is given in Figure 5.6.

macro proc VMAP (size,vectorin, vectorout, F)
{

typeof (size) c;
par (c=0;c<size;c++)
{

F(vectorin[c],vectorout[c]);
}

}

Figure 5.6: The Handel-C implementation of the process VMAP.

5.2.3 Streams to Vectors

In certain situations we may require a specialised refinement of map f which inputs a stream and

outputs a vector. This has type:

s2vmapn f :: bAc → 〈B〉n

An informal definition of s2vmapn is a simple analogy of map:

s2vmapn f bx1, x2, ..., xnc = 〈f x1, f x2, ..., f xn〉n

Proof this is a valid refinement requires the following diagram to commute:

[A] [B]

bAc 〈B〉n

6
absS

6
absV

-map f

-s2vmapn f

76

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 77

We can provide a proof for this as follows:

(map f ◦ absS) bx1, x2, ..., xnc {id}
= map f [x1, x2, ..., xn] {def. absS}
= [f x1, f x2, ..., f xn] {def. map}
= absV 〈f x1, f x2, ..., f xn〉n {def. absV }
= absV (s2vmapn f bx1, x2, ..., xnc) {def. s2vmapn}
= (absV ◦ s2vmapn f) bx1, x2, ..., xnc {def. ◦}

Process Refinement

A process refinement for this specialised refinement of map, s2vmapn, can be supplied in the form

of the process S2V MAPn, depicted in Figure 5.7.

-x1, x2, ..., xn

-eot S2V MAPn

-f x1

-f x2

...

-f xn

Figure 5.7: The map process with stream input and vector output.

5.2.4 Vectors to Streams

Similarly we may on occasion require a specialised refinement of map f which inputs a vector and

outputs a stream. This has type:

v2smapn f :: 〈A〉n → bBc

An informal definition of v2smapn is a simple analogy of map:

v2smapn f 〈x1, x2, ..., xn〉n = bf x1, f x2, ..., f xnc

Proof this is a valid refinement requires the following diagram to commute:

[A] [B]

〈A〉n bBc

6
absV

6
absS

-map f

-v2smapn f

We can provide a proof for this as follows:

77

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 78

(map f ◦ absV) 〈x1, x2, ..., xn〉n {id}
= map f [x1, x2, ..., xn] {def. absV }
= [f x1, f x2, ..., f xn] {def. map}
= absS bf x1, f x2, ..., f xnc {def. absS}
= absS (v2smapn f 〈x1, x2, ..., xn〉n) {def. v2smapn}
= (absS ◦ v2smapn f) 〈x1, x2, ..., xn〉n {def. ◦}

Process Refinement

The specialised refinement of map, v2smapn, was introduced in Section 5.2.4. A process refinement

for this function will be supplied in the form of the process V 2SMAPn, depicted in Figure 5.8.

-x1

-x2

...

-xn

V 2SMAPn
-f x1, f x2, ..., f xn

-eot

Figure 5.8: The map process with vector input and stream output.

5.2.5 Combined Structures

Let us consider the act of mapping some function f (of type A → B) to every item of every sub

segment of a two dimensional structure (for example, a list of lists). As such, in list terms we have

an expression we shall term tdmap (two dimensional map):

tdmap f = map (map f)

The expression tdmap f has type:

[[A]] → [[A]]

5.2.6 Distributed Lists

The function tdmap should provide a valid refinement for map in a distributed list setting. Proof

that this is a valid refinement of map requires, as always, the following diagram to commute.

[A] [B]

[[A]] [[A]]

6
absD

6
absD

-map f

-tdmap f

78

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 79

We can prove the diagram commutes for this definition of tdmap, along with our first definition

of absD as follows. Here [s1, s2, ..., sn] represents a distributed list (a list of lists) where s1 is the

first sub-segment, s2 is the second segment and so on.

(map f ◦ absD1) [s1, s2, ..., sn] {id}
= (map f ◦ (++)/) [s1, s2, ..., sn] {def. absD1}
= ((++)/ ◦ map (map f)) [s1, s2, ..., sn] {map promotion}
= ((++)/ ◦ tdmap f) [s1, s2, ..., sn] {def. tdmap}
= (absD1 ◦ tdmap f) [s1, s2, ..., sn] {def. absD1}

5.2.7 Stream of Streams

In stream terms, we could refine tdmap f to a function ssmap f . This has type:

bbAcc → bbBcc

and can be defined as follows:

ssmap f = smap (smap f)

To prove this is a valid refinement, the following diagram must commute:

[[A]] [[B]]

bbAcc bbBcc

6
absSS

6
absSS

-map (map f)

-ssmap f

Given a stream of streams denoted bs1, ..., snc, the proof may proceed as follows:

(map (map f) ◦ absSS) bs1, ..., snc
= map (map f) [l1, ..., ln] {def. absSS}
= [map f l1, ..., map f ln] {def. map}
= absS bmap f l1, ..., map f lnc {def. absS}
= absS b(map f ◦ absS) s1, ..., (map f ◦ absS) snc {def. absS}
= absS b(absS ◦ smap f) s1, ..., (absS ◦ smap f) snc {smap− r1}
= absS ◦ smap (absS ◦ smap f) bs1, ..., snc {def. smap}
= absS ◦ smap absS ◦ smap (smap f) bs1, ..., snc {smap distributivity}
= map absS ◦ absS ◦ smap (smap f) bs1, ..., snc {smap− r1}
= absSS ◦ smap (smap f) bs1, ..., snc {def. absSS}
= absSS ◦ ssmap f bs1, ..., snc {def. ssmap}

79

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 80

bx11, x12, ..., x1mc
bx21, x22, ..., x2pc
...
bxn1, xn2, ..., xnqc-

-eotA

-eotB

SSMAP

bf x11, f x12, ..., f x1mcbf x21, f x22, ..., f x2pc
...
bf xn1, f xn2, ..., f xnqc-

-eotA

-eotB

Figure 5.9: The map process for streams of streams.

Process Refinement

We have already shown that wherever F is a valid refinement of f , then SMAP (F) is a valid

refinement of smap f . It naturally follows then that a refinement of ssmap f , the map function in

stream of streams terms, can be defined quite intuitively:

SSMAP (F) = SMAP (SMAP (F))

Given a process F , with alphabet:

αF = {in :: A, out :: B}

The alphabet of SSMAP (F) can be defined as follows:

αSSMAP (F) = {in :: bbAcc, out :: bbBcc}

It may be useful to explore the behaviour of SSMAP a little. From the point of view of the

outer SMAP , we have a process which repeatedly applies SMAP (F) to the input, until the end of

transmission is signalled. In doing so, at each step of the outer SMAP , an entire stream is input,

processed and output.

Handel-C Implementation

Ideally, we’d be able to construct a definition for SSMAP in Handel-C entirely analogous to that

we used in CSP. Unfortunately, as is typical of imperative languages, Handel-C does not support

currying. So we would like to be able to give a definition along the lines of the following:

macro proc SSMAP (streamofstreamsin,streamofstreamsout,F)
{

SMAP (streamofstreamsin,streamofstreamsout,SMAP(F));
}

The only definition Handel-C will natively understand requires expansion of one level of SMAP ,

thus we the definition given in Figure 5.10.

80

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 81

macro proc SSMAP (streamofstreamsin,streamofstreamsout,F)
{

Bool eot;
eot = False;
do
{

prialt
{
case streamofstreamsin.eot ? eot:

streamofstreamsout.eot ! True;
break;

default:
SMAP (streamofstreamsin.value,

streamofstreamsout.value,
F);

break;
}

} while (!eot)
}

Figure 5.10: The simple Handel-C definition of the process SMAP.

5.2.8 Vector of Streams

In vector of stream terms, we could refine tdmap f to a function vsmap f . This has type:

〈bAc〉n → 〈bBc〉n

and can be defined as follows:

vsmap f = vmap (smap f)

Proof of the validity of this refinement would be analogous to that for the stream of streams,

above.

Process Refinement

-x11, x12, ..., x1n

-eot1

-x21, x22, ..., x2n

-eot2

...

-xn1, xn2, ..., xnn

-eotn

V SMAPn

-f x11, f x12, ..., f x1n

-eot1

-f x21, f x22, ..., f x2n

-eot2

...

-f xn1, f xn2, ..., f xnn

-eotn

Figure 5.11: The map process for vectors of streams.

Yet again, given V MAP (F) and SMAP (F) forming valid refinements for vmap f and smap f ,

we have the following as a refinement of vsmap f :

81

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 82

V SMAPn(F) = V MAPn(SMAP (F))

Given a process F , with alphabet:

αF = {in :: A, out :: B}

The alphabet of V SMAPn(F) can be defined as follows:

αV SMAPn(F) = {in :: 〈bAc〉n, out :: 〈bBc〉n}

Handel-C Implementation

Bearing the usual constraints in mind, our Handel-C definition can proceed as given in Figure 5.12.

macro proc VSMAP (size,vectorofstreamsin, vectorofstreamsout, F)
{

par (c=0;c<size;c++)
{

SMAP (vectorofstreamsin[c],
vectorofstreamsout[c],
F);

}
}

Figure 5.12: The Handel-C definition of the process VSMAP.

5.2.9 Stream of Vectors

In stream of vector terms, we could refine tdmap f to a function svmap f . This has type:

b〈A〉nc → b〈B〉nc

and can be defined as follows:

svmap f = smap (vmap f)

Proof of the validity of this refinement would be analogous to that for the stream of streams,

above.

Process Refinement

As before, having already proven V MAP (F) is a valid refinement of vmap f , wherever F is a valid

refinement of f , we can infer the following as a valid refinement of svmap f :

SV MAPn(F) = SMAP (V MAPn(F))

82

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 83

-eot

-
-

-

xn1

xn2

...

xnn

...

x21

x22

...

x2n

x11

x12

...

x1n

SV MAPn

eot -

-
-

-

f xn1

f xn2

...

f xnn

...

f x21

f x22

...

f x2n

f x11

f x12

...

f x1n

Figure 5.13: The map process for streams of vectors.

Given a process F , with alphabet:

αF = {in :: A, out :: B}

The alphabet of SV MAPn(F) can be defined as follows:

αSV MAPn(F) = {in :: b〈A〉nc, out :: b〈B〉nc}

Handel-C Implementation

Again, the lack of currying in Handel-C will require us to provide an expanded definition, as

demonstrated in Figure 5.14.

macro proc SVMAP (vectorsize,streamofvectorsin,streamofvectorsout,F)
{

Bool eot;
eot = False;
do
{

prialt
{
case streamofvectorsin.eot ? eot:

streamofvectorsout.eot ! True;
break;

default:
VMAP (vectorsize,

streamofvectorsin.value,
streamofvectorsout.value,
F);

break;
}

} while (!eot)
}

Figure 5.14: The Handel-C definition of the process SVMAP.

5.2.10 Vectors of Vectors

In vector of vector terms, we could refine tdmap f to a function vvmap f . This has type:

83

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 84

〈〈A〉m〉n → 〈〈B〉m〉n

and can be defined as follows:

vvmap f = vmap (vmap f)

Proof of the validity of this refinement would be analogous to that for the stream of streams,

above.

Process Refinement

Finally, the vector of vector case, for a refinement of vvmap f , is no exception.

V V MAP(n,m)(F) = V MAPn(V MAPm(F))

Given a process F , with alphabet:

αF = {in :: A, out :: B}

The alphabet of V V MAP(n,m)(F) can be defined as follows:

αV V MAP(n,m)(F) = {in :: 〈〈A〉m〉n, out :: 〈〈B〉m〉n}

Handel-C Implementation

The Handel-C implementation is given in Figure 5.15.

macro proc VVMAP (sizen,sizem,vectorofvectorsin, vectorofvectorsout, F)
{

typeof (sizen) c;
par (c=0;c<sizen;c++)
{

VMAP (sizem,
vectorofvectorsin[c],
vectorofvectorsout[c],
F);

}
}

Figure 5.15: The Handel-C definition of the process VVMAP.

84

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 85

5.3 Fold

The fold family of functions are also known as catamorphisms. In list terms, the function fold

(also written /) has the following type:

fold :: (A → A → A) → [A] → A

Informally we can define it as follows:

fold (⊕) [x1, x2, ..., xn] = x1 ⊕ x2 ⊕ ...⊕ xn

This function is usually implemented in terms of one of four common variants, foldr, foldl,

foldr1 and foldl1. Firstly, let us examine foldr.

foldr :: (A → B → B) → B → [A] → B

Here evaluation starts from the right, and a base value e is employed:

foldr (⊕) e [x1, x2, ..., xn] = x1 ⊕ (x2 ⊕ (...⊕ (xn ⊕ e)))

Next we have foldl.

foldl :: (A → B → A) → A → [B] → A

Again a base value e is employed, and in this version, evaluation starts from the left:

foldl (⊕) e [x1, x2, ..., xn] = (((e⊕ x1)⊕ x2)⊕ ...)⊕ xn

For non-empty lists, we can omit the base value e, to provide a further two variations. First

we have foldr1.

foldr1 :: (A → A → A) → [A] → A

This has the following definition, evaluating from the right:

foldr1 (⊕) [x1, x2, ..., xn] = x1 ⊕ (x2 ⊕ (...⊕ (xn−1 ⊕ xn)))

Finally we have foldl1:

foldl1 :: (A → A → A) → [A] → A

This can be defined as follows, evaluating from the left:

foldl1 (⊕) [x1, x2, ..., xn] = (((x1 ⊕ x2)⊕ x3)⊕ ...)⊕ xn

There exists certain relationships between the fold variants which we may find useful. Each

left or right variant may be expressed in terms of its opposite, by reversing the input list (using

reverse) and switching the operand order of ⊕ (using the function flip):

85

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 86

foldr (⊕) e = foldl (flip (⊕)) e ◦ reverse

foldl (⊕) e = foldr (flip (⊕)) e ◦ reverse

foldr1 (⊕) = foldl1 (flip (⊕)) ◦ reverse

foldl1 (⊕) = foldr1 (flip (⊕)) ◦ reverse

To summarise, the types of the four fold variants are as follows:

foldr :: (A → B → B) → B → [A] → B

foldl :: (A → B → A) → A → [B] → A

foldr1 :: (A → A → A) → [A] → A

foldl1 :: (A → A → A) → [A] → A

Their informal definitions are as follows:

foldr (⊕) e [x1, x2, ..., xn] = x1 ⊕ (x2 ⊕ (...⊕ (xn ⊕ e)))

foldl (⊕) e [x1, x2, ..., xn] = (((e⊕ x1)⊕ x2)⊕ ...)⊕ xn

foldr1 (⊕) [x1, x2, ..., xn] = x1 ⊕ (x2 ⊕ (...⊕ (xn−1 ⊕ xn)))

foldl1 (⊕) [x1, x2, ..., xn] = (((x1 ⊕ x2)⊕ x3)⊕ ...)⊕ xn

As with map, we may, from time to time, find a binary infix operator version of any of the fold

functions useful. As before, we may make use of the Haskell convention of surrounding a function

name in single quotes, for example:

(⊕) ‘fold‘ xs = fold (⊕) xs

Or alternatively we may resort to BMF style operators:

(⊕)/ xs = fold (⊕) xs

((⊕)→/ e) xs = foldl (⊕) e xs

((⊕)←/ e) xs = foldr (⊕) e xs

(⊕)⇁/ xs = foldl1 (⊕) xs

(⊕)↽/ xs = foldr1 (⊕) xs

One useful feature of the fold family of functions is that they can also be implemented as a

series of steps composed together. Take for example foldr:

foldr (⊕) e [x1, x2, ..., xn] = x1 ⊕ (x2 ⊕ (...⊕ (xn ⊕ e)))

Using sections, we can re-package this definition into a series of steps composed together, as

follows:

foldr (⊕) e [x1, x2, ..., xn] = ((x1⊕) ◦ (x2⊕) ◦ ... ◦ (xn⊕)) e

This we can then simplify using a map and a fold to arrive at the following:

86

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 87

foldr (⊕) e [x1, x2, ..., xn] = ((◦)/ (map (⊕) [x1, x2, ..., xn])) e

Similarly, consider foldl:

foldl (⊕) e [x1, x2, ..., xn] = (((e⊕ x1)⊕ x2)⊕ ...)⊕ xn

= ((⊕ xn) ◦ (⊕ xn−1) ◦ ... ◦ (⊕ x2) ◦ (⊕ x1)) e

= ((◦)/ (map (flip (⊕)) (reverse [x1, x2, ..., xn]))) e

5.3.1 Streams

A stream refinement of fold, sfold, could have the following type:

sfold :: (A → A → A) → bAc → A

As before, the implementation could proceed informally as follows:

sfold (⊕) bx1, x2, ..., xnc = x1 ⊕ x2 ⊕ ...⊕ xn

To prove this is a valid refinement of fold, we require that the following diagram commutes.

[A] A

bAc A

6
absS

6
id

-fold (⊕)

-sfold (⊕)

We can prove this as follows:

(fold (⊕) ◦ absS) bx1, x2, ..., xnc {id}
= fold (⊕) [x1, x2, ..., xn] {def. absS}
= x1 ⊕ x2 ⊕ ...⊕ xn {def. fold}
= sfold (⊕) bx1, x2, ..., xnc {def. sfold}
= (id ◦ sfold (⊕)) bx1, x2, ..., xnc {id}

Similarly, we could prove refinements in stream terms of the four fold variants. These would

have the following types:

sfoldr :: (A → B → B) → B → bAc → B

sfoldl :: (A → B → A) → A → bBc → A

sfoldr1 :: (A → A → A) → bAc → A

sfoldl1 :: (A → A → A) → bAc → A

Their informal definitions are as follows:

87

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 88

sfoldr (⊕) e bx1, x2, ..., xnc = x1 ⊕ (x2 ⊕ (...⊕ (xn ⊕ e)))

sfoldl (⊕) e bx1, x2, ..., xnc = (((e⊕ x1)⊕ x2)⊕ ...)⊕ xn

sfoldr1 (⊕) bx1, x2, ..., xnc = x1 ⊕ (x2 ⊕ (...⊕ (xn−1 ⊕ xn)))

sfoldl1 (⊕) bx1, x2, ..., xnc = (((x1 ⊕ x2)⊕ x3)⊕ ...)⊕ xn

Process Refinement

SFOLD
-

x1, x2, ..., xn

-eot
-

(x1 ⊕ x2 ⊕ ...⊕ xn)

Figure 5.16: The fold process for streams.

A process implementing the functionality of fold (⊕) in stream terms should input a stream

of values, and output the result of folding the operator ⊕ over the values input. This is depicted

in Figure 5.16. As noted, fold will not be generally be directly implemented. Instead we should

consider the implementations of the four variants.

Simple Case Definition

To illustrate the behaviour of these functions, let us initially consider a process candidate for

SFOLDL(⊕, e), which is a potential refinement for the function sfoldl (⊕) e. We shall begin by

considering the simple case, where the members of the input stream are items. In this case, we

shall pass the first parameter (⊕) as a function, not a process. The implementation is therefore a

simple instance of tail recursion.

SFOLDL(⊕, e) = in.eot ? any → out ! e → SKIP

|
in.value ? x → SFOLDL(⊕, e⊕ x)

Alternatively, with the introduction of a local variable, we can construct a non-recursive version.

SFOLDL(⊕, e) = a := e;

µX•
in.eot ? any → out ! a → SKIP

|
in.value ? x → a := a⊕ x; X

The process SFOLDR is not quite so straightforward to implement. The right ordered com-

putation it employs requires that the last value of the list must be known before computation may

commence. Recall the relationship between foldr and foldl:

88

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 89

foldr (⊕) e = foldl (flip (⊕)) e ◦ reverse

This gives us one possible implementation for SFOLDR in which we reverse the incoming

stream, and flip the order of the operands for the operator (⊕). So in functional terms, we have

the following definition for sfoldr:

sfoldr (⊕) e = sfoldl (flip (⊕)) e ◦ sreverse

This could be refined in process terms by the following definition:

SFOLDR(⊕, e) = SREV ERSE À SFOLDL(flip (⊕), e)

The process SREV ERSE will have to be implemented via some form of buffering. As a slight

improvement on efficiency, we may wish to make that buffering functionality local to SFOLDR.

Here, at each step, if we can receive a value from the input stream, we append that to the end of

the buffer and continue. When EOT is signalled on the input stream, we then perform the fold

on our local buffer, and output the result on the output conduit. In this scheme, we would have

something akin to the following:

SFOLDR(⊕, e) = xs := [];

µX•
in.eot ? any → out ! (sfoldr (⊕) e xs) → SKIP

|
in.value ? x → xs := xs ++ [x];X

The remaining two variants, SFOLDR1 and SFOLDL1, can be expressed in terms of their

already introduced counterparts. In the case of SFOLDR1 we can use the first value received from

the input stream as the base value:

SFOLDL1(⊕) = in.value ? x → SFOLDL(⊕, x)

Similarly, for SFOLDR1 we can use the last value received from the input stream as the base

value:

SFOLDR1(⊕) = SREV ERSE À
(in.value ? x → SFOLDL(flip (⊕), x))

Note that, as with their functional equivalents, both SFOLDR1 and SFOLDL1 will not

operate correctly when fed an empty stream. Deadlock will occur, given that both processes will

wait indefinitely for a value from the stream which they will never receive.

89

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 90

General Case Definition

The above group of implementations work fine for simple streams of items. However, for two or

more dimensional structures (for example, streams of vectors or streams of streams) they are not

general enough. Let us consider some alternatives.

When attempting to generalise process definitions for map earlier in this chapter, it became

clear that it would be necessary to shift the responsibility for reading from the input stream into

the process passed in as a parameter. However, in terms of fold this modification is complicated

somewhat by the non-atomic nature of the individual operations. That is to say, we can not deal

with any single item from the input stream in complete isolation. It is necessary to maintain some

kind of state between successive reads from the input stream.

Perhaps the ”purest” way to model this progression of state changes in CSP is through commu-

nication. Here each stage of the fold is a process which is responsible for reading in a value from

the stream, as well as the current state value, applying the binary operator to these two values, and

then outputting the result, which may in turn form the input to the next stage. This is perhaps

best illustrated diagrammatically, as can be seen in Figure 5.17. We shall see that this bears a

close resemblance to vector implementations for fold introduced later in this section.

? ? ?
e

⊕ ⊕ ⊕- - - - -. . .

(input stream)
bx1, x2, ... xnc

e⊕ x1 (e⊕ x1)⊕ x2 (...((e⊕ x1)⊕ x2)...)⊕ xn

Figure 5.17: A potential communication oriented implementation of the process SFOLDL.

In effect we can achieve this kind of definition by composing together two processes. The first

takes in a stream and outputs the values it contains as a vector. This can be achieved using

S2V MAPn, introduced in Section 5.2.3. Here the function applied to each item in the incoming

stream is simply the identity function. The second process is then the vector implementation of a

left directed fold. In other words:

S2V MAPn(id) À V FOLDLn(F, e)

Although such a definition would be mathematically pleasing in that it adheres well to the

principles of functional programming, it will be hard to implement in practice. For a start, there

would be a significant communication and process usage overhead, which may seem wasteful.

Additionally, we’d effectively be refining this into an n staged pipeline, which would of course

break one of the important principles of the stream refinement; that we do not necessarily know

how many items we are dealing with.

90

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 91

Let us consider instead a specification which will lend itself to a more efficient implementation.

In practice we are much more likely to opt for an approach where the computation proceeds by

accumulation in some kind of local variable, akin to our simple case definitions. In CSP, given

that we are dealing with a specification language rather than a programming language, we do not

normally concern ourselves with many of the technicalities that confront us when writing code to

be compiled. In this instance however, we are forced to think in slightly more detail than usual

about how CSP processes may affect the state of variables.

In a version of ‘pseudo CSP’ where processes can return values, we can construct the following

general case definition for SFOLDL. Here the process F passed as a parameter is given the current

state variable a, and is then responsible for reading a value from the input stream, applying the

operator to that value and a, and then returning the result.

SFOLDL(F, e) = a := e;

µX•
in.eot ? any → prd a → SKIP

2

a := F (a)[in.value/in];X

Where e is not a constant, we may benefit from manipulating it directly, allowing us to do

without the local variable a. We have:

SFOLDL(F, e) = µX•
in.eot ? any → prd e → SKIP

2

e := F (e)[in.value/in];X

In an alternative ”pseudo CSP”, where parameters can be passed to processes by reference

rather than purely by value, we can have a definition as follows. Here the process F given as a

parameter is passed the current state variable a as a reference (i.e. it can modify it). It is then

responsible for reading a value from the input stream, applying the operator to that value and a,

and storing the result in the variable a. Here parameter passing by reference is denoted with an

ampersand (&).

SFOLDL(F, e) = a := e;

µX•
in.eot ? any → prd a → SKIP

2

F (&a)[in.value/in];X

As before, we may in certain circumstances be able to do without the local variable a.

91

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 92

SFOLDL(F, e) = µX•
in.eot ? any → prd e → SKIP

2

F (&e)[in.value/in]; X

Proof

To prove that SFOLDL(F, e) is a valid refinement of sfoldl f e, we shall require the following

diagram to commute:

bBc A

Process Process

?

prd

?

prd

-
sfoldl f e

-
¤ SFOLDL(F, e)

That is to say, we require the following equivalence to hold for any stream s, and binary operator

f with base value e, where F is a valid refinement of F :

prd s ¤ SFOLDL(F, e) = prd (sfoldl f e s)

Let us consider our sample case definition for SFOLDL. To prove this is a valid refinement we

wish to prove the following equivalence holds:

prd s ¤ SFOLDL(⊕, e) = prd (sfoldl (⊕) e s)

As before, in the case of the empty stream, the proof will follow that for SMAP . Now for the

case of the non empty stream. Let us unwind the definition of SFOLDL in the left hand side

of the above equivalence. We shall use the recursive definition as it is easier to reason with, but

hopefully it can be appreciated that the two definitions are equivalent. So, to begin with, we have:

prd s ¤ SFOLDL(⊕, e)

Which becomes:

prd (a : s) ¤

in.eot ? any → out ! e → SKIP

|
in.value ? x → SFOLDL(⊕, e⊕ x)

It is clear both sides of the feed are willing to communicate on the value conduit of the stream

which connects them, so we have:

prd (s) ¤ SFOLDL(⊕, e⊕ a)

92

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 93

Were the remaining stream s empty, we would then be reduced to:

out ! e⊕ a

Which is equivalent to:

prd (e⊕ a)

Which, given the definition of sfoldl is equivalent to:

prd (sfoldl (⊕) e bac)

Handel-C Implementation

In the simple case where we are dealing with a stream of items, we can construct a definition for

SFOLDL as shown in Figure 5.18. Here the parameter f is an expression, perhaps a Handel-C macro

expr.

macro proc SFOLDL_SIMPLE (streamin, conduitout, f, e)
{

Bool eot;
messagetype (streamin) x;
typeof (e) a;
eot = False;
a = e;
do
{

prialt
{
case streamin.eot ? eot:

conduitout ! a;
break;

case streamin.value ? x:
a = f (a,x);
break;

}
} while (!eot)

}

Figure 5.18: The simple case Handel-C definition of the process SFOLDL.

In the more general case we have the following. Note in Handel-C parameters passed to macro

proc style definitions are implicitly done so by reference. So, in this definition, the process F is

responsible for consuming a value from the input stream (if it is willing to communicate), then

applying the binary operator to that value and a, and finally storing the result in a. The definition

can be seen in Figure 5.19.

To illustrate, a sample process F working on simple streams of items is given in Figure 5.20.

Let us now consider the implementation of SFOLDR. To begin with we have the simple case

where we are dealing with a basic stream of items. This is effectively a two pass process. First

93

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 94

macro proc SFOLDL (streamin, conduitout, F, e)
{

Bool eot;
typeof(e) a;
eot = False;
a = e;
do
{

prialt
{
case streamin.eot ? eot:

PRODUCE (conduitout, a);
break;

default:
F (streamin.value,a);
break;

}
} while (!eot)

}

Figure 5.19: The general case Handel-C definition of the process SFOLDL.

macro proc F (conduitin,a)
{

messagetype (conduitin) x;
prialt
{
case conduitin ? x:

a = f (a,x);
break;

default:
break;

}
}

Figure 5.20: The process F for use with stream implementations of fold.

we are required to read the entire stream into a buffer. Once EOT is signalled, we can then begin

our second pass, where we step backwards through the items in the buffer, applying the operator

f and accumulating the result as we go. When we have got to the start of the buffer, we can then

output the result.

The static nature of Handel-C programs means that we are required to know the size of the

buffer in advance. This definition is slightly flexible in that it can cope with any streams with

length up to the specified buffer size, not just those with exactly that length. A simple check is

made here to make sure the items input from the stream do not go beyond the end of the buffer.

Where the incoming stream is larger than the buffer, the fold operation will be carried out on a

truncated sequence. As such, this is only a valid refinement of sfoldr where the length of the buffer

is guaranteed to be greater than or equal to any incoming stream. An example implementation

employing this buffering scheme is given in Figure 5.21.

94

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 95

macro proc SFOLDR_SIMPLE (buffersize, streamin, conduitout, f, e)
{

Bool eot;
messagetype (streamin) x;
messagetype (streamin) xs[buffersize];
typeof (buffersize) bufferpos;
typeof (e) a;
eot = False;
bufferpos = 0;
do
{

prialt
{
case streamin.eot ? eot:

a = e;
while (bufferpos > 0)
{

bufferpos--;
a = f (xs[bufferpos],a);

}
conduitout ! a;
break;

case streamin.value ? x:
if (bufferpos < buffersize)
{

xs[bufferpos] = x;
bufferpos++;

}
break;

}
} while (!eot)

}

Figure 5.21: The simple case Handel-C definition of the process SFOLDR.

The more general case is somewhat harder to define, given that the two pass behaviour of the

simple case above has forced us to decouple the communication from the application of the binary

operator. As noted previously, one way to implement a fold in stream terms is actually by means

of the vector implementation, something along the lines of the following:

SFOLDRn(F, e) = S2V MAPn(id) À V FOLDRn(F, e)

Whilst we may consider this definition wasteful for the simple case of a streams of items, it

may become a more reasonable strategy when considering more complex structures.

5.3.2 Vectors

Let us consider a function vfold as a possible refinement in vector terms for fold. Strictly speaking,

we should write this vfoldn, however we shall find it convenient on occasion to omit the subscript

where its value is clear from context. This function has the following type:

95

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 96

vfoldn :: (A → A → A) → 〈A〉n → A

As before, the implementation could proceed informally as follows:

vfoldn (⊕) 〈x1, x2, ..., xn〉n = x1 ⊕ x2 ⊕ ...⊕ xn

To prove this is a valid refinement of fold, we require that the following diagram commutes.

[A] A

〈A〉n A

6
absV

6
id

-fold (⊕)

-vfoldn (⊕)

We can prove this as follows:

(fold (⊕) ◦ absV) 〈x1, x2, ..., xn〉n {id}
= fold (⊕) [x1, x2, ..., xn] {def. absV }
= x1 ⊕ x2 ⊕ ...⊕ xn {def. fold}
= vfoldn (⊕) 〈x1, x2, ..., xn〉n {def. vfoldn}
= (id ◦ vfoldn (⊕)) 〈x1, x2, ..., xn〉n {id}

Similarly, we could prove refinements in vector terms of the four fold variants. These would

have the following types:

vfoldrn :: (A → B → B) → B → 〈A〉n → B

vfoldln :: (A → B → A) → A → 〈B〉n → A

vfoldr1n :: (A → A → A) → 〈A〉n → A

vfoldl1n :: (A → A → A) → 〈A〉n → A

Their informal definitions are as follows:

vfoldrn (⊕) e 〈x1, x2, ..., xn〉n = x1 ⊕ (x2 ⊕ (...⊕ (xn ⊕ e)))

vfoldln (⊕) e 〈x1, x2, ..., xn〉n = (((e⊕ x1)⊕ x2)⊕ ...)⊕ xn

vfoldr1n (⊕) 〈x1, x2, ..., xn〉n = x1 ⊕ (x2 ⊕ (...⊕ (xn−1 ⊕ xn)))

vfoldl1n (⊕) 〈x1, x2, ..., xn〉n = (((x1 ⊕ x2)⊕ x3)⊕ ...)⊕ xn

Process Refinement

A process implementing the functionality of fold (⊕) in vector terms should input a vector of

values, and output the result of folding the operator ⊕ over the values input. This is depicted in

Figure 5.22.

96

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 97

-x1

-x2

...

-xn

VFOLD -(x1 ⊕ x2 ⊕ ...⊕ xn)

Figure 5.22: The fold process for vectors.

? ? ? ? ? ? ? ?x1 x2 x3 x4 x5 x6 x7 x8

⊕ ⊕ ⊕ ⊕

? ? ? ?x1 ⊕ x2 x3 ⊕ x4 x5 ⊕ x6 x7 ⊕ x8

⊕ ⊕

??x1 ⊕ x2 ⊕ x3 ⊕ x4 x5 ⊕ x6 ⊕ x7 ⊕ x8

⊕

?result

Figure 5.23: A funnel implementation of the VFOLD process.

Logarithmic Version

For an associative operator, the well known funnel network topology implements this functionality

in log(n) time. This is depicted in Figure 5.23. Let us consider how this process might be defined.

First, recall the type of the operator (⊕) passed to fold as a parameter:

⊕ :: A → A → A

Given a process F which refines the operator ⊕, with the following alphabet:

αF = {ina :: A, inb :: A, out :: A}

The network can be defined along the following lines.

V FOLDn(F) =

n

||
i = 1

F [mid(2i)/ina,mid(2i+1)/inb,midi/out]

We have the following alphabet:

αV FOLDn(F) = {in :: 〈A〉n, out :: A}

In practice a full definition will need a bit more complexity, to deal with the input vector and

the output conduit. However the above definition gives a general idea of the topology. Given this

definition, mid1 is the output conduit, and the conduits in the range [midn, . . . , mid2n−1] form the

input vector. Thus, for n inputs, this network uses a total of n− 1 processing elements and 2n− 1

conduits.

97

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 98

Linear Version

Where the characteristic operator (⊕) is not associative we shall need to look to alternative im-

plementations of fold in the vector setting. Again we shall want to consider the four different

variations of fold. Let us initially consider a process candidate for V FOLDL, which is a potential

refinement for the function vfoldl. This is depicted in Figure 5.24.

? ? ?

Pinitial P1 Pn−1 Pfinal

e- i1- . . .in−2- in−1- in-

x1 xn−1 xn

i1 = e⊕ x1

in−2 = (...((e⊕ x1)⊕ x2)...)⊕ xn−2

in−1 = ((...((e⊕ x1)⊕ x2)...)⊕ xn−2)⊕ xn−1

in = (((...((e⊕ x1)⊕ x2)...)⊕ xn−2)⊕ xn−1)⊕ xn

Figure 5.24: A linear implementation of the VFOLDL process.

Recall that for foldl, the operator passed as a parameter will have the following type:

(⊕) :: A → B → A

Thus, a process F which refines this operator is required, which should have the following

alphabet:

αF = {left :: A, right :: B, result :: A}

We can now construct our definition. For the most part, we are connecting each instance of F

with the corresponding element of the input vector, and the output of the previous instance of F .

This pattern changes slightly at either end as we have to deal with the base value, and the output

conduit.

V FOLDLn(F, e) =

Pinitial ||

(n− 1)

||
i = 1

Pi

 ||Pfinal

 \{mid}

where

Pinitial = prd e [mid1/out]

Pi = F [midi/left, ini/right,midi+1/result]

Pfinal = F [midn/left, inn/right, out/result]

This gives us the following alphabet:

αV FOLDLn(F, e) = {in :: 〈B〉n, out :: A}

98

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 99

Along similar lines to the process V FOLDL we may construct the variant V FOLDL1, depicted

in Figure 5.25.

? ? ? ?

Pinitial P2 Pn−2 Pfinal- i1- i2- in−3- in−2- in−1-

x1

. . .

x2 x3 xn−1 xn

i1 = x1 ⊕ x2

i2 = (x1 ⊕ x2)⊕ x3

in−3 = (...((x1 ⊕ x2)⊕ x3)...)⊕ xn−2

in−2 = ((...((x1 ⊕ x2)⊕ x3)...)⊕ xn−2)⊕ xn−1

in−1 = (((...((x1 ⊕ x2)⊕ x3)...)⊕ xn−2)⊕ xn−1)⊕ xn

Figure 5.25: A linear implementation of the VFOLDL1 process.

We can define this as follows:

V FOLDL1n(F) =

Pinitial ||

(n− 2)

||
i = 2

Pi

 ||Pfinal

 \{mid}

where

Pinitial = F [in1/left, in2/right, midi/result]

Pi = F [midi−1/left, ini+1/right, midi/result]

Pfinal = F [midn−2/left, inn/right, out/result]

Here the process F will take the following alphabet:

αF = {left :: A, right :: A, result :: A}

Giving V FOLDL1n(F) an alphabet like so:

αV FOLDL1n(F) = {in :: 〈A〉n, out :: A}

Let us now consider the right directed version of fold in vector terms. The process V FOLDR

is depicted in Figure 5.26.

Recall that for the function foldr, the operator passed as a parameter will have the following

type:

(⊕) :: A → B → B

As such, for V FOLDR, the alphabet of process F will be defined like so:

αF = {left :: A, right :: B, result :: B}

99

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 100

? ? ?

Pfinal P2 Pn Pinitial

in¾ in−1¾ in−2¾ i1¾ e¾. . .

x1 x2 xn

i1 = xn ⊕ e

in−2 = x3 ⊕ (...(xn−1 ⊕ (xn ⊕ e))...)

in−1 = x2 ⊕ (x3 ⊕ (...(xn−1 ⊕ (xn ⊕ e))...))

in = x1 ⊕ (x2 ⊕ (x3 ⊕ (...(xn−1 ⊕ (xn ⊕ e))...)))

Figure 5.26: A linear implementation of the VFOLDR process.

Giving V FOLDRn(F) an alphabet like so:

αV FOLDRn(F) = {in :: 〈A〉n, out :: B}

We can supply a definition, similar to that for V FOLDL, as follows:

V FOLDRn(F, e) =

Pfinal ||

n

||
i = 2

Pi

 ||Pinitial

 \{mid}

where

Pinitial = prd e [midn/out]

Pi = F [ini/left,midi/right, midi−1/result]

Pfinal = F [in1/left,mid1/right, out/result]

Finally we shall look at V FOLDR1, again a simple modification of V FOLDR. This is depicted

in Figure 5.27.

? ? ? ?

Pfinal P2 Pn−2 Pinitial
¾ ¾ ¾ . . . ¾ ¾ ¾in in−1 in−2 i2 i1

x1 x2 xn−2 xn−1 xn

i1 = xn−1 ⊕ xn

i2 = xn−2 ⊕ (xn−1 ⊕ xn)

in−2 = x3 ⊕ (...(xn−2 ⊕ (xn−1 ⊕ xn))...)

in−1 = x2 ⊕ (x3 ⊕ (...(xn−2 ⊕ (xn−1 ⊕ xn))...))

in = x1 ⊕ (x2 ⊕ (x3 ⊕ (...(xn−2 ⊕ (xn−1 ⊕ xn))...)))

Figure 5.27: A linear implementation of the VFOLDR1 process for vectors.

So, for V FOLDR1, the process F takes the following alphabet:

100

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 101

αF = {left :: A, right :: A, result :: A}

Giving V FOLDR1n(F) an alphabet like so:

αV FOLDR1n(F) = {in :: 〈A〉n, out :: A}

The definition is then as follows:

V FOLDR1n(F, e) =

Pfinal ||

(n− 2)

||
i = 2

Pi

 ||Pinitial

 \{mid}

where

Pinitial = F [inn−1/left, inn/right,midn−2/result]

Pi = F [ini/left, midi/right, midi−1/result]

Pfinal = F [in1/left,mid1/right, out/result]

Proof

To prove that V FOLDLn(F, e) is a valid refinement of vfoldln f e, we shall require the following

diagram to commute:

〈B〉n A

Process Process

?

prd

?

prd

-
vfoldln f e

-
¤ V FOLDLn(F, e)

That is to say, we require the following equivalence to hold for any vector v, and binary operator

f with base value e, where F is a valid refinement of f :

prd v ¤ V FOLDLn(F, e) = prd (vfoldln f e v)

Let us first explore our definition of V FOLDLn a little. Where the input vector is of size zero,

we effectively implement just Pinitial. This is equivalent to just producing the base value e:

V FOLDL0(F, e) = prd e

Furthermore, where the input vector is of size one, we implement just Pinitial in parallel with

Pfinal.

V FOLDL1(F, e) = (Pinitial || Pfinal) \{mid}

where
Pinitial = prd e [mid1/out]

Pfinal = F [mid1/left, in1/right, out/result]

101

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 102

So, to return to the proof. In the case of the empty vector, we are attempting to prove the

following equivalence:

prd 〈〉0 ¤ V FOLDL0(F, e) = prd (vfoldl0 f e 〈〉0)

Given that prd 〈〉0 results in no action, we then have:

V FOLDL0(F, e) = prd (vfoldl0 f e 〈〉0)

We know from our definition of V FOLDL that:

V FOLDL0(F, e) = prd e

...and thus:

prd e = prd (vfoldl0 f e 〈〉0)

Finally, appealing to our definition of vfoldl we arrive at:

prd e = prd e

Handel-C Implementation

We shall see that our Handel-C implementations follow naturally from our CSP specifications.

It is important to bear in mind that, whereas CSP subscripts range from 1, those in Handel-

C, in common with most programming languages, range from zero. First we shall consider the

implementation of VFOLDR, which is given in Figure 5.28.

macro proc VFOLDR (n,in,cout,F,e)
{

conduittype(cout) mid [n];
typeof(n) i;
par (i=0;i<=n;i++)
{

ifselect (n==0)
PRODUCE (cout,e);

else ifselect (i==n)
PRODUCE (mid[n-1],e);

else ifselect (i==0)
F (in[i],mid[i],cout);

else
F (in[i],mid[i],mid[i-1]);

}
}

Figure 5.28: The Handel-C definition of the process VFOLDR.

Next we have the implementation of VFOLDL, which is given in Figure 5.29.

102

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 103

macro proc VFOLDL (n,in,cout,F,e)
{

conduittype(in[0]) mid [n];
typeof(n) i;
par (i=0;i<=n;i++)
{

ifselect (n==0)
PRODUCE (cout,e);

else ifselect (i==0)
PRODUCE (mid[0],e);

else ifselect (i==n)
F (in[n-1],mid[n-1],cout);

else
F (in[i-1],mid[i-1],mid[i]);

}
}

Figure 5.29: The Handel-C definition of the process VFOLDL.

5.3.3 Combined Structures

In terms of a two dimensional structure (for example a list of lists), the act of folding over the

entire structure is equivalent to mapping the fold function to each part, and then folding all of

the intermediate results. Thus, we have the following expression, which we shall term tdfold

(two-dimensional fold):

tdfold (⊕) = fold (⊕) ◦ map (fold (⊕))

The expression tdfold (⊕) has type:

[[A]] → A

As usual, we can construct a further four variants of tdfold, based on each of the four fold

variants. These have the following type:

tdfoldr :: (A → B → B) → B → [[A]] → B

tdfoldl :: (A → B → A) → A → [[B]] → A

tdfoldr1 :: (A → A → A) → [[A]] → A

tdfoldl1 :: (A → A → A) → [[A]] → A

These can be defined as follows:

tdfoldr (⊕) e = foldr (⊕) e ◦ map (foldr (⊕) e)

tdfoldl (⊕) e = foldl (⊕) e ◦ map (foldl (⊕) e)

tdfoldr1 (⊕) = foldr1 (⊕) ◦ map (foldr1 (⊕))

tdfoldl1 (⊕) = foldl1 (⊕) ◦ map (foldl1 (⊕))

103

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 104

5.3.4 Distributed Lists

The function tdfold should provide a suitable refinement for fold in a distributed list setting. As

a proof of this we would require the following diagram to commute:

[A] A

[[A]] A

6
absD

6
id

-fold (⊕)

-tdfold (⊕)

The proof of this, taking a list of lists [l1, l2, ..., ln], and our first definition for absD, is a simple

product of reduce promotion:

(fold (⊕) ◦ absD1) [l1, l2, ..., ln] {id}
= (fold (⊕) ◦ fold (++)) [l1, l2, ..., ln] {def. absD1}
= (fold (⊕) ◦ map (fold (⊕)) [l1, l2, ..., ln] {reduce promotion}
= tdfold (⊕) [l1, l2, ..., ln] {def. tdfold}
= (id ◦ tdfold (⊕)) [l1, l2, ..., ln] {id}

Similar proofs could be constructed for the four tdfold variants.

5.3.5 Vector of Streams

Let us take as an example the vector of streams. A refinement of the above function would have

type:

〈bAc〉n → A

The ‘parts’ in this case are streams, so we begin by applying sfold. These are contained in a

vector, so we need to employ vmap to map sfold to each part. The function vmap used in this

way will produce a vector of intermediate results, so we should now apply vfold to collect them.

Thus we have:

vsfoldn (⊕) = vfoldn (⊕) ◦ vmapn (sfold (⊕))

To prove this is a valid refinement of tdfold, we must show that the following diagram commutes:

[[A]] A

〈bAc〉n A

6
absV S

6
id

-tdfold (⊕)

-vsfoldn (⊕)

104

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 105

Given a vector of streams 〈s1, s2, ..., sn〉n, we can prove this as follows:

(tdfold (⊕) ◦ absV S) 〈s1, ..., sn〉n {id}
= tdfold (⊕) [l1, ..., ln] {def. absV S}
= (fold (⊕) ◦ map (fold (⊕))) [l1, ..., ln] {def. tdfold}
= fold (⊕) [fold (⊕) l1, ..., fold (⊕) ln] {def. map}
= fold (⊕) [(fold (⊕) ◦ absS) s1, ..., (fold (⊕) ◦ absS) sn] {def. absS}
= fold (⊕) [sfold (⊕) s1, ..., sfold (⊕) sn] {sfold}
= (fold (⊕) ◦ absV) 〈sfold (⊕) s1, ..., sfold (⊕) sn〉n {def. absV }
= (fold (⊕) ◦ absV ◦ vmapn (sfold (⊕))) 〈s1, ..., sn〉n {def. vmap}
= (vfoldn (⊕) ◦ vmapn (sfold (⊕))) 〈s1, ..., sn〉n {vfold}
= vsfoldn (⊕) 〈s1, ..., sn〉n {def. vsfold}
= (id ◦ vsfoldn (⊕)) 〈s1, ..., sn〉n {vsfold}

Similarly, we could prove refinements for the four variants of tdfold in vector of streams terms.

These would then be defined as follows:

vsfoldrn (⊕) e = vfoldrn (⊕) e ◦ vmapn (sfoldr (⊕) e)

vsfoldln (⊕) e = vfoldln (⊕) e ◦ vmapn (sfoldl (⊕) e)

vsfoldr1n (⊕) = vfoldr1n (⊕) ◦ vmapn (sfoldr1 (⊕))

vsfoldl1n (⊕) = vfoldl1n (⊕) ◦ vmapn (sfoldl1 (⊕))

Process Refinement

? ? ?
〈s1, . . . sn−1, sn〉n

V MAPn

(SFOLDL(P))

V FOLDn(P)

SFOLDL
(P)

. . . SFOLDL
(P)

SFOLDL
(P)

? ? ?

Pinitial P1 Pn−1 Pfinal

e- i1- . . .in−2- in−1- in-

Figure 5.30: The VSFOLDL process.

Let us consider a refinement of this in process terms. In general, we have the following pattern

from which our fold variants are all derived:

vfoldn (⊕) ◦ vmapn (sfold (⊕))

By now, we have already seen how all of these components can be refined to processes. So our

task here is one simply of composition. Thus, we have:

V SFOLDn(P) = V MAPn (SFOLD (P)) Àn V FOLDn(P)

105

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 106

Given some process P which refines the operator ⊕. An example of this - the specific case of

V SFOLDL is given in Figure 5.30. The process V SFOLDL is defined as follows:

V SFOLDLn(P) = V MAPn (SFOLDL (P)) Àn V FOLDLn(P)

One interesting issue highlighted by the diagram in Figure 5.30 is the fact that it may be possible

to construct an alternative version of V SFOLDL and similar processes in which the components

are grouped differently, and as such, conceptually, the flow of data is transposed. This is illustrated

in Figure 5.31.

? ? ?
〈s1, . . . sn−1, sn〉n

SFOLDL
(P)

. . . SFOLDL
(P)

SFOLDL
(P)

? ? ?

Pinitial P1

stage1

Pn−1

stagen−1

Pfinal

stagen

e- - . . . - - -

Figure 5.31: An alternative construction of the VSFOLDL process.

To understand how the process illustrated in Figure 5.31 might be constructed algorithmically,

let us return to our original functional specification. The process V SFOLDL is a refinement of the

function tdfoldl. Let us recall the one of the characteristics of fold given at the start of Section 5.3

- that a fold can be re-packaged as a series of steps composed together. For foldl, we have:

foldl (⊕) e [x1, x2, ..., xn] = ((◦)/ (map (flip (⊕)) (reverse [x1, x2, ..., xn]))) e

If we factor in our definition of tdfoldl, we have the following (rather unwieldy!) definition:

tdfoldl (⊕) e [x1, x2, ..., xn] = ((◦)/ (map (flip (⊕)) (reverse (map (foldl (⊕) e) [x1, x2, ..., xn])))) e

Appealing to map distributivity for a little simplification, we have:

tdfoldl (⊕) e [x1, x2, ..., xn] = ((◦)/ (map stage (reverse [x1, x2, ..., xn]))) e

stage = (flip (⊕)) ◦ (foldl (⊕) e)

What we now have, in effect, is something more akin to a pipeline. The function stage in the

above definition represents a single stage in the pipeline, and this corresponds to the functionality

of each dashed box in Figure 5.31.

5.3.6 Stream of Streams

This should follow an analogous proof as that for the vector of streams. So, in short, we have:

106

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 107

ssfold (⊕) = sfold (⊕) ◦ smap (sfold (⊕))

ssfoldr (⊕) e = sfoldr (⊕) e ◦ smap (sfoldr (⊕) e)

ssfoldl (⊕) e = sfoldl (⊕) e ◦ smap (sfoldl (⊕) e)

ssfoldr1 (⊕) = sfoldr1 (⊕) ◦ smap (sfoldr1 (⊕))

ssfoldl1 (⊕) = sfoldl1 (⊕) ◦ smap (sfoldl1 (⊕))

Process Refinement

As with the previous case, our components are already proven, so all that we need to do here is a

simple act of composition. Thus, in general we have:

SSFOLD(P) = SMAP (SFOLD (P)) À SFOLD(P)

Given some process P which refines the operator ⊕.

5.3.7 Stream of Vectors

Again, with a proof analogous to that for the vector of streams, we could verify that the following

is a valid refinement of tdfold:

svfoldm (⊕) = sfold (⊕) ◦ smap (vfoldm (⊕))

svfoldrm (⊕) e = sfoldr (⊕) e ◦ smap (vfoldrm (⊕) e)

svfoldlm (⊕) e = sfoldl (⊕) e ◦ smap (vfoldlm (⊕) e)

svfoldr1m (⊕) = sfoldr1 (⊕) ◦ smap (vfoldr1m (⊕))

svfoldl1m (⊕) = sfoldl1 (⊕) ◦ smap (vfoldl1m (⊕))

Process Refinement

As before the task of process refinement is a simple one. In general we have:

SV FOLDm(P) = SMAP (V FOLDm (P)) À SFOLD(P)

Given some process P which refines the operator ⊕.

5.3.8 Vectors of Vectors

Finally, for the vector of vectors:

vvfoldn,m (⊕) = vfoldn (⊕) ◦ vmapn (vfoldm (⊕))

vvfoldrn,m (⊕) e = vfoldrn (⊕) e ◦ vmapn (vfoldrm (⊕) e)

vvfoldln,m (⊕) e = vfoldln (⊕) e ◦ vmapn (vfoldlm (⊕) e)

vvfoldr1n,m (⊕) = vfoldr1n (⊕) ◦ vmapn (vfoldr1m (⊕))

vvfoldl1n,m (⊕) = vfoldl1n (⊕) ◦ vmapn (vfoldl1m (⊕))

107

CHAPTER 5. REFINEMENT OF KEY HIGHER ORDER FUNCTIONS 108

Process Refinement

Once more, a simple task, we have:

V V FOLDn,m(P) = V MAPn (V FOLDm (P)) Àn V FOLDn(P)

Given some process P which refines the operator ⊕.

5.4 Summary

We have seen the refinement to processes of the key higher order functions - map and fold. We have

looked at these in terms of the two basic settings - streams and vectors, as well as combinations

of the two. We have explored the many different variations of fold. We should now be equipped

with arguably the two most significant building blocks required in refining from the functional

environment to the process environment.

108

Chapter 6

A Library of Provably Correct

Re-usable Hardware Components

6.1 Introduction

In this chapter we shall present a library of components, building on those from the previous chapter

(map and fold), based on higher order functions. We shall show how these highly expressive

functional patterns can be refined in a provably correct manner to create re-usable hardware

components. We begin by looking at homomorphisms - a class of functions which encapsulate

several of the most commonly encountered higher order functions. Following on from this we

explore several highly useful higher order functions - filter, scan and unfold. Towards the end

of the chapter we examine some more specialised patterns - the functions zfold and zmap, as

well as a look at how the well known Divide and Conquer paradigm might be approached in this

methodology.

6.2 Homomorphisms

Let us consider the group of functions known as homomorphisms. In list terms, a homomorphism

is any function h, which can, given some binary operator (⊕) and function f , be defined as follows:

h = fold (⊕) ◦ map f

We may find it useful to explicitly state the types involved here:

f :: A → B

(⊕) :: B → B → B

h :: [A] → B

109

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 110

Let us provide some examples. The most well known homomorphic functions are also our three

most commonly encountered higher order functions - map, fold and filter. Here we shall consider

their definitions in line with the above template. First, some auxiliary functions. We shall find

useful a simple function we shall call single. This takes an item and returns a list containing just

that item. We shall also find useful another similar function we shall call perhaps. This takes

an item and a predicate. If the predicate applied to that item is true, the function returns a list

containing just that item, otherwise an empty list is returned. We have:

single :: A → [A]

perhaps :: (A → Bool) → A → [A]

single x = [x]

perhaps x = if p x then [x] else []

Given these two simple functions, we can construct definitions for map, fold and filter which

clearly demonstrate their homomorphic nature:

map f = fold (++) ◦map (single ◦ f)

fold (⊕) = fold (⊕) ◦map id

filter p = fold (++) ◦map (perhaps p)

Any definition which is a homomorphism may take advantage of homomorphism promotion, a

useful set of transformation rules. For our functions map, fold and filter we have:

map f ◦ fold (++) = fold (++) ◦ map (map f) {map promotion}
fold (⊕) ◦ fold (++) = fold (⊕) ◦ map (fold (⊕)) {fold promotion}
filter p ◦ fold (++) = fold (++) ◦ map (filter p) {filter promotion}

Indeed, for any homomorphism in list terms, following the above template, we can state:

h ◦ fold (++) = fold (⊕) ◦ map h {homomorphism promotion}

6.2.1 Streams

One might hope the same concept of the homomorphism in list terms will map also to the stream

setting. Here, our generic homomorphism is defined as follows:

sh = sfold (⊕) ◦ smap f

This has the following type:

sh :: bAc → B

Let us prove that this comprises a valid refinement for h, our generic list homomorphism. For

this, we shall require that the following diagram commutes:

110

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 111

[A] B

bAc B

6
absS

6
id

-h

-sh

Here is the proof:

(h ◦ absS) bx1, x2, ..., xnc {id}
= (fold (⊕) ◦ map f ◦ absS) bx1, x2, ..., xnc {def. h}
= (fold (⊕) ◦ absS ◦ smap f) bx1, x2, ..., xnc {ref. smap}
= (id ◦ sfold (⊕) ◦ smap f) bx1, x2, ..., xnc {ref. sfold}
= (id ◦ sh) bx1, x2, ..., xnc {def. sh}

We can prove that the homomorphism promotion rule also applies in the stream setting as

follows:

sh ◦ sfold (+̂+) {id}
= (sfold (⊕) ◦ smap) f ◦ sfold (+̂+) {def. sh}
= id ◦ fold (⊕) ◦ absS ◦ smap f ◦ sfold (+̂+) {ref. sfold}
= fold (⊕) ◦ absS ◦ smap f ◦ sfold (+̂+) {def. id}
= fold (⊕) ◦map f ◦ absS ◦ sfold (+̂+) {ref. smap}
= fold (⊕) ◦map f ◦ fold (++) ◦ absSS {ref. sfold (+̂+)}
= fold (⊕) ◦ fold (++) ◦map (map f) ◦ absSS {map promotion}
= fold (⊕) ◦map (fold (⊕)) ◦map (map f) ◦ absSS {fold promotion}
= fold (⊕) ◦map (fold (⊕) ◦map f) ◦ absSS {map distrib.}
= fold (⊕) ◦map (fold (⊕) ◦map f) ◦map absS ◦ absS {def. absSS}
= fold (⊕) ◦map (fold (⊕) ◦map f ◦ absS) ◦ absS {map distrib.}
= fold (⊕) ◦map (fold (⊕) ◦ absS ◦ smap f) ◦ absS {ref. smap}
= fold (⊕) ◦map (id ◦ sfold (⊕) ◦ smap f) ◦ absS {ref. sfold}
= fold (⊕) ◦map (sfold (⊕) ◦ smap f) ◦ absS {def. id}
= fold (⊕) ◦ absS ◦ smap (sfold (⊕) ◦ smap f) {ref. smap}
= id ◦ sfold (⊕) ◦ smap (sfold (⊕) ◦ smap f) {ref. sfold}
= sfold (⊕) ◦ smap (sfold (⊕) ◦ smap f) {def. id}
= sfold (⊕) ◦ smap sh {def. sh}

So, we have the following equivalence, our stream version of the generic homomorphism pro-

motion rule.

sh ◦ sfold (+̂+) = sfold (⊕) ◦ smap sh {homomorphism promotion}

So, given the following definitions:

111

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 112

ssingle :: A → bAc
sperhaps :: (A → Bool) → A → bAc
ssingle x = bxc
sperhaps x = if p x then bxc else bc

We can define our commonly used higher order functions in the homomorphic style:

smap f = sfold (++) ◦ smap (ssingle ◦ f)

sfold (⊕) = sfold (⊕) ◦ smap id

sfilter p = sfold (++) ◦ smap (sperhaps p)

We may then derive our common instances of the homomorphism promotion rule in stream

terms. We have:

smap f ◦ sfold (+̂+) = sfold (+̂+) ◦ smap (smap f) {smap promotion}
sfold (⊕) ◦ sfold (+̂+) = sfold (⊕) ◦ smap (sfold (⊕)) {sfold promotion}
sfilter p ◦ sfold (+̂+) = sfold (+̂+) ◦ smap (sfilter p) {sfilter promotion}

6.2.2 Vectors

As with the stream case, one would hope the concept of the homomorphism can also be applied in

the vector setting. Here, our generic homomorphism is defined as follows:

vhn = vfoldn (⊕) ◦ vmapn f

This has the following type:

vhn :: 〈A〉n → B

Let us prove that this comprises a valid refinement for h, our generic list homomorphism. For

this, we shall require that the following diagram commutes:

[A] B

〈A〉n B

6
absV

6
id

-h

-vhn

Here is the proof:

(h ◦ absV) 〈x1, x2, ..., xn〉n {id}
= (fold (⊕) ◦ map f ◦ absV) 〈x1, x2, ..., xn〉n {def. h}
= (fold (⊕) ◦ absV ◦ vmapn f) 〈x1, x2, ..., xn〉n {ref. vmap}
= (id ◦ vfoldn (⊕) ◦ smap f) 〈x1, x2, ..., xn〉n {ref. vfold}
= (id ◦ vh) 〈x1, x2, ..., xn〉n {def. vh}

112

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 113

6.3 Filter

The function filter has the following type:

filter :: (A → Bool) → [A] → [A]

One possible definition for filter is in terms of a list comprehension, as follows:

filter p xs = [x | x ← xs, p x]

We may often encounter recursive definitions for filter, as follows:

filter p [] = []

filter p (x : xs) = if p x

then x : filter p xs

else filter p xs

Another possible definition, this time ‘point-free’, is as follows:

filter p = fold (++) ◦ map (λx • if p x then [x] else [])

We may find it useful to separate out the Lambda abstraction here, into a function we shall

call perhaps. So we have:

perhaps p x = if p x then [x] else []

filter p = fold (++) ◦ map (perhaps p)

As with our other higher order functions, we may find an infix binary operator version of filter

useful. First, the usual Haskell convention:

p ‘filter‘ xs = filter p xs

In BMF we have the following:

p ¢ xs = filter p xs

6.3.1 Streams

In stream terms, we have the function sfilter. This has the following type:

sfilter :: (A → Bool) → bAc → bAc

We could define it in a similar method to filter, assuming we have an equivalent construct to

the list comprehension in stream terms.

sfilter p xs = b x | x ← xs, p x c

To prove this is a valid refinement of filter, we should demonstrate that the following diagram

commutes:

113

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 114

[A] [A]

bAc bAc

6
absS

6
absS

-filter p

-sfilter p

This can be proved as follows:

(filter p ◦ absS) bx1, x2, ..., xnc {id}
= filter p [x1, x2, ..., xn] {def. absS}
= [x | x ← [x1, x2, ..., xn], p x] {def. filter}
= absS b x | x ← bx1, x2, ..., xnc, p x c {def. absS}
= (absS ◦ sfilter p) bx1, x2, ..., xnc {def. sfilter}

We may also wish to provide a second proof, for a refinement of filter based on the alternative

definition given earlier. We have:

sperhaps :: (A → Bool) → A → bAc
sfilter :: (A → Bool) → bAc → bAc
sperhaps p x = if p x then bxc else bc
sfilter p = sfold (+̂+) ◦ smap (sperhaps p)

Here we make use of the stream concatenate operator (see Section 7.3). First, let us prove that

sperhaps is a valid refinement of perhaps.

A [A]

A bAc

6
id

6
absS

-perhaps p

-sperhaps p

The proof of this is as follows:

(perhaps p ◦ id) x {id}
= perhaps p x {def. id}
= if p x then [x] else [] {def. perhaps}
= absS (if p x then bxc else bc) {def. absS}
= absS (sperhaps p x) {def. sperhaps}
= (absS ◦ sperhaps p) x {def. ◦}

We may now construct the proof for our alternative definition of sfilter as a valid refinement

of filter:

114

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 115

(filter p ◦ absS) bx1, x2, ..., xnc {id}
= (fold (++) ◦ map (perhaps p) ◦ absS) bx1, x2, ..., xnc {def. filter}
= (fold (++) ◦ absS ◦ smap (perhaps p)) bx1, x2, ..., xnc {ref. smap}
= (id ◦ sfold (++) ◦ smap (perhaps p)) bx1, x2, ..., xnc {ref. sfold}
= (sfold (++) ◦ smap (perhaps p)) bx1, x2, ..., xnc {def. id}
= (sfold (++) ◦ smap (absS ◦ sperhaps p)) bx1, x2, ..., xnc {ref. sperhaps}
= (sfold (++) ◦ smap absS ◦ smap (sperhaps p)) bx1, x2, ..., xnc {smap distrib.}
= (absS ◦ sfold (+̂+) ◦ smap (sperhaps p)) bx1, x2, ..., xnc {absS promotion}
= (absS ◦ sfilter p) bx1, x2, ..., xnc {def. sfilter}

Let us clarify the use of absS promotion in the above proof. This provides us with the following

equivalence:

absS ◦ sfold (+̂+) = sfold (++) ◦ smap absS

Close inspection should reveal that this is in fact an instance of the homomorphism promotion

rule in stream terms. We can reassure ourselves that absS is indeed a stream homomorphism given

that we can define it as follows:

absS = sfold (++) ◦ smap single

Process Refinement

SFILTER
-

x1, x2, ..., xn

-eot

-
sfilter p x

-eot

Figure 6.1: The map process for streams.

A process implementing the functionality of filter p in stream terms should input a stream

of values, and output a stream of values containing only those values that satisfy the predicate p.

This is depicted in Figure 6.1.

Simple Case Definition

Let us consider a process candidate for SFILTER in the simple case that the members of the

stream are items. Here, at each stage, if the input eot channel is willing to communicate, we receive

a message from it, echo the message to the output eot channel, and then we are finished. If the

input value channel is willing to communicate, we receive a single value from it, and apply the

predicate p to it. If the result is true, we may output this value and proceed to the next step. If

115

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 116

not we proceed to the next step without outputting the value. In this version, the predicate p can

be passed as a function parameter to SFILTER.

SFILTER(p) = µ X • in.eot ? any → out.eot ! any → SKIP

|
in.value ? x → (out.value ! x → X <| p x |> X)

It may help clarify this definition to include also the alphabet of the process SFILTER. We

have:

αSFILTER(p) = {in :: bAc, out :: bAc}

General Case Definition

As was the case with SMAP , in the more general case, we shall find the processing of the eot

conduit will remain the same. However, the processing of the values that make up the stream

will depend on their type. In the above case we assumed the values were simple items, however,

the values may well be streams or vectors in themselves. In fact, we shall see a more general

implementation of SFILTER actually matches that of SMAP .

SFILTER(P) = µX • in.eot ? any → out.eot ! any → SKIP

2

P [in.value/in, out.value/out]; X

The process P here is not a direct refinement of the function p in the original specification. The

process P has the following alphabet:

αP = {in :: A, out :: A}

This process should read from its input conduit, and, in the case that the value read satisfies

the predicate p, output the value to the output conduit. If the value does not satisfy the predicate,

it will output nothing. In fact, the process P should be a refinement of the expression perhaps p,

where perhaps is defined as follows:

perhaps p x = if p x then x else nothing

The alphabet of SFILTER(P) remains the same as that for our simple case definition:

αSFILTER(P) = {in :: bAc, out :: bAc}

Proof

To prove that SFILTER(P) is a valid refinement of sfilter p, we shall require the following

diagram to commute:

116

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 117

bAc bAc

Process Process

?
Prd

?
Prd

-
sfilter p

-
¤ SFILTER(P)

That is to say, we require the following equivalence to hold for any stream s, and predicate p,

where P is a valid refinement of perhaps p :

Prd s ¤ SFILTER(P) = Prd (sfilter p s)

In the case of the empty stream, the proof will follow that used for SMAP above. In the case

of the non-empty stream, we shall need to consider the relationship of the value nothing with the

function Prd. As previously stated, Prd applied to nothing returns the process SKIP .

Prd nothing = SKIP

As a consequence of this, consider producing a stream containing several items, one of which is

nothing:

Prd (Stream [nothing : s])

Recall part of the definition of Prd when applied to streams:

Prd (Stream (a : s)) = (Prd a)[out.value/out]; Prd (Stream s)

As such we find the following equivalence:

Prd (Stream [nothing : s]) = SKIP ; Prd (Stream s)

Given that in CSP, the behaviour of SKIP sequentially composed with any process P is

equivalent to just P , we have:

Prd (Stream [nothing : s]) = Prd (Stream s)

To generalise, we can state that the action of producing a stream containing any number of

nothing values is identical to producing the same stream with all of the nothing values removed.

Thus filtering a stream on a predicate p and producing the result is equivalent to mapping perhaps p

to the stream and producing that result:

Prd (sfilter p s) = Prd (smap (perhaps p) s)

Thus smap (perhaps p) can be seen as a refinement of sfilter p in function terms. In process

terms, we have already shown SMAP (F) to be a valid refinement of smap f . So, in turn

SMAP (P), where P is a valid refinement of perhaps p, is a valid refinement for sfilter p.

117

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 118

Handel-C Implementation

In the simple case where we are dealing with a stream of items, we can construct a definition for

SFILTER as given in Figure 6.2. Here the parameter p is an expression, perhaps a Handel-C macro

expr.

macro proc SFILTER_SIMPLE (streamin,streamout,p)
{

Bool eot;
messagetype (streamin) x;
eot = False;
do
{

prialt
{
case streamin.eot ? eot:

streamout.eot ! True;
break;

case streamin.value ? x:
if (p(x))
{
streamout.value ! x;

}
break;

}
} while (!eot)

}

Figure 6.2: The simple case definition of the process SFILTER.

In the more general case, the definition of SFILTER will in fact be equivalent to that of SMAP.

The process F passed as a parameter will adhere to the following scheme, the process SPERHAPS.

This is given in Figure 6.3. Here p is some expression, possibly a Handel-C macro expr defining

the required predicate functionality.

macro proc SPERHAPS (conduitin,conduitout)
{

prialt
{
case conduitin ? x:

if (p(x))
{

conduitout ! f (x);
}
break;

default:
break;

}
}

Figure 6.3: The definition of the process SPERHAPS.

118

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 119

6.3.2 Vectors

In vector terms, let us consider a possible refinement vfilter.

vfiltern :: (A → Bool) → 〈A〉n → 〈A〉m

One notable characteristic of filter is that the input and output are not necessarily the same

size, and therefore the output size is not predictable in advance. We can see this in the differing

subscripts in the type definition above. As such we can not implement filter directly in terms of

vectors - instead we would need to look towards a combined structure.

6.3.3 Vector to Stream

One possible alternative, which may be useful in certain circumstances, is a refinement of filter

which takes the input as a vector, but produces the output as a stream. Here we have a function

v2sfiltern, with the following type:

v2sfiltern :: (A → Bool) → 〈A〉n → bAc

A definition could be given similar to that for sfilter above:

v2sfiltern p = vfoldn (+̂+) ◦ vmapn (sperhaps p)

Here we are reusing the exact same definition of sperhaps as used in the definition of sfilter,

above. For this definition of v2sfiltern to be considered a valid refinement of filter, we require

that the following diagram commutes:

[A] [A]

〈A〉n bAc

6
absV

6
absS

-filter p

-v2sfilter p

The proof of this is as follows:

(filter p ◦ absV) 〈x1, x2, ..., xn〉n {id}
= (fold (++) ◦ map (perhaps p) ◦ absV) 〈x1, x2, ..., xn〉n {def. filter}
= (fold (++) ◦ absS ◦ vmapn (perhaps p)) 〈x1, x2, ..., xn〉n {ref. vmap}
= (id ◦ vfoldn (++) ◦ vmapn (perhaps p)) 〈x1, x2, ..., xn〉n {ref. vfold}
= (vfoldn (++) ◦ vmapn (perhaps p)) 〈x1, x2, ..., xn〉n {def. id}
= (vfoldn (++) ◦ vmapn (absS ◦ sperhaps p)) 〈x1, x2, ..., xn〉n {ref. sperhaps}
= (vfoldn (++) ◦ vmapn absS ◦ vmapn (sperhaps p)) 〈x1, x2, ..., xn〉n {vmap distrib.}
= (absS ◦ vfoldn (+̂+) ◦ vmapn (sperhaps p)) 〈x1, x2, ..., xn〉n {see below}
= (absS ◦ vfiltern p) 〈x1, x2, ..., xn〉n {def. vfilter}

119

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 120

As with our earlier proof for sfilter, this proof hinges on the following equivalence, a form of

homomorphism promotion:

absS ◦ vfoldn (+̂+) = vfoldn (++) ◦ vmapn absS

To prove that this equivalence holds, we require that the following diagram commutes:

〈[A]〉n [A]

〈bAc〉n bAc

6
vmapn absS

6
absS

-vfoldn (++)

-vfoldn (+̂+)

Here comes the proof, as before, analogous to those given in Section 7.3.1:

(vfoldn (++) ◦ vmapn absS) 〈s1, s2, ..., sn〉n {id}
= vfoldn (++) babsS s1, absS s2, ..., absS snc {def. vmapn}
= absS s1 ++ absS s2 ++ ... ++ absS sn {def. vfoldn}
= (absS (s1 +̂+ s2)) ++ ... ++ absS sn {ref. +̂+}
= (absS (s1 +̂+ s2 +̂+ s3)) ++ ... ++ absS sn {ref. +̂+}

{...}
= absS (s1 +̂+ s2 +̂+ ... +̂+ sn) {ref. +̂+}
= (absS ◦ vfoldn (+̂+)) 〈s1, s2, ..., sn〉n {def. vfoldn}

Process Refinement

As noted previously, filter can not be implemented directly where both the input and the output

is a vector.

Let us consider the specialised refinement of filter which takes in a vector but outputs a stream,

the function v2sfiltern. Let us consider here a process refinement of this in the form of the process

V 2SFILTERn. This is depicted in Figure 6.4.

-x1

-x2

...

-xn

V 2SFILTERn
-sfilter p bx1, x2, ..., xnc
-eot

Figure 6.4: The filter process with vector input and stream output.

6.3.4 Combined Structures

In terms of a two dimensional structure (for example a list of lists), the act of filtering the entire

structure is performed by mapping the filter function to each part. We shall call this function

120

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 121

tdfilter. This can be defined as follows:

tdfilter p = map (filter p)

This has type:

[[A]] → [[A]]

6.3.5 Distributed Lists

The function tdfilter should provide a suitable refinement for filter in a distributed list setting.

As a proof of this we would require the following diagram to commute:

[A] [A]

[[A]] [[A]]

6
absD

6
absD

-filter p

-tdfilter p

The proof of this, taking a list of lists [l1, l2, ..., ln], and our first definition for absD, is a simple

product of filter promotion:

(filter p ◦ absD1) [l1, l2, ..., ln] {id}
= (filter p ◦ fold (++)) [l1, l2, ..., ln] {def. absD1}
= (fold (++) ◦ map (filter p)) [l1, l2, ..., ln] {filter promotion}
= (fold (++) ◦ tdfilter p) [l1, l2, ..., ln] {def. tdfilter}
= (absD1 ◦ tdfilter p) [l1, l2, ..., ln] {def. absD1}

6.3.6 Stream of Streams

Given that we have a valid refinement of filter in stream terms, we may also assume we can derive

a refinement of the two dimensional filter in terms of the stream of streams. As regards the stream

of streams, the function tdfilter can be refined by the function ssfilter. This can be defined as

follows, simply by replacing the filter and map used in tdfilter with the corresponding stream

refinement:

ssfilter p = smap (sfilter p)

This has type:

bbAcc → bbAcc

Proof of the validity of this refinement requires that the following diagram commutes:

121

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 122

[[A]] [[A]]

bbAcc bbAcc

6
absSS

6
absSS

-tdfilter p

-ssfilter p

The proof may proceed as follows:

(tdfilter p ◦ absSS) bs1, ..., snc {id}
= tdfilter p [l1, ..., ln] {def. absSS}
= map (filter p) [l1, ..., ln] {def. tdfilter}
= [filter p l1, ..., filter p ln] {def. map}
= [(filter p ◦ absS) s1, ..., (filter p ◦ absS) sn] {def. absS}
= [(absS ◦ sfilter p) s1, ..., (absS ◦ sfilter p) sn] {def. sfilter}
= map (absS ◦ sfilter p) [s1, ..., sn] {def. map}
= (map absS ◦ map (sfilter p)) [s1, ..., sn] {map− dist}
= (map absS ◦ map (sfilter p) ◦ absS) bs1, ..., snc {def. absS}
= (map absS ◦ absS ◦ smap (sfilter p)) bs1, ..., snc {def. smap}
= (absSS ◦ smap (sfilter p)) bs1, ..., snc {def. absSS}
= (absSS ◦ ssfilter p) bs1, ..., snc {def. ssfilter}

Process Refinement

We have shown that wherever F is a valid refinement of f , then SMAP (F) is a valid refinement

of smap f . Additionally we have shown that wherever P is a valid refinement of perhaps p, then

SFILTER(P) is a valid refinement of sfilter p. Thus if we recall the definition for ssfilter:

ssfilter p = smap (sfilter p)

A valid process refinement, SSFILTER, should follow intuitively:

SSFILTER(P) = SMAP (SFILTER(P))

Given a process P , with alphabet:

αP = {in :: A, out :: A}

The alphabet of SSFILTER(P) can be defined as follows:

αSSFILTER(P) = {in :: bbAcc, out :: bbAcc}

122

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 123

Handel-C Implementation

As was the case with SSMAP , we would like to be able to do something like the following:

macro proc SSFILTER (streamofstreamsin,streamofstreamsout,p)
{

SMAP (streamofstreamsin,streamofstreamsout,SFILTER(p));
}

However, the only definition Handel-C will natively understand requires expansion of one level

of SFILTER (equivalent to SMAP), thus we have the definition shown in Figure 6.5.

macro proc SSFILTER (streamofstreamsin,streamofstreamsout,p)
{

Bool eot;
eot = False;
do
{

prialt
{
case streamofstreamsin.eot ? eot:

streamofstreamsout.eot ! True;
break;

default:
SFILTER_SIMPLE (streamofstreamsin.value,

streamofstreamsout.value,
p);

break;
}

} while (!eot)
}

Figure 6.5: The Handel-C definition of the process SSFILTER.

6.3.7 Vector of Streams

In terms of a vector of streams, the function tdfilter can be refined by vsfilter. We can define

this analogously to tdfilter. Given that the ‘parts’ are streams, we shall apply sfilter to each, and

knowing that these are contained within a vector, we can achieve this with vmap.

vsfilter p = vmap (sfilter p)

This has type:

〈bAc〉n → 〈bAc〉n

Proof of the validity of this refinement requires that the following diagram commutes:

123

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 124

[[A]] [[A]]

〈bAc〉n 〈bAc〉n

6
absV S

6
absV S

-tdfilter p

-vsfilter p

The proof may proceed as follows, in a fashion analogous to that for the stream of streams.

(tdfilter p ◦ absV S) 〈s1, ..., sn〉n {id}
= tdfilter p [l1, ..., ln] {def. absV S}
= map (filter p) [l1, ..., ln] {def. tdfilter}
= [filter p l1, ..., filter p ln] {def. map}
= [(filter p ◦ absS) s1, ..., (filter p ◦ absS) sn] {def. absS}
= [(absS ◦ sfilter p) s1, ..., (absS ◦ sfilter p) sn] {def. sfilter}
= map (absS ◦ sfilter p) [s1, ..., sn] {def. map}
= (map absS ◦ map (sfilter p)) [s1, ..., sn] {map− dist}
= (map absS ◦ map (sfilter p) ◦ absV) 〈s1, ..., sn〉n {def. absV }
= (map absS ◦ absV ◦ vmap (sfilter p)) 〈s1, ..., sn〉n {def. vmap}
= (absV S ◦ vmap (sfilter p)) 〈s1, ..., sn〉n {def. absV S}
= (absV S ◦ vsfilter p) 〈s1, ..., sn〉n {def. vsfilter}

Process Refinement

Let us recall our definition of vsfilter:

vsfilter p = vmap (sfilter p)

As before, given our refinements for vmap and sfilter, we can construct the following refinement

for vsfilter p somewhat intuitively.

V SFILTER(P) = V MAP (SFILTER(P))

Given a process P , with alphabet:

αP = {in :: A, out :: A}

The alphabet of V SFILTER(P) can be defined as follows:

αV SFILTER(P) = {in :: 〈bAc〉n, out :: 〈bAc〉n}

Handel-C Implementation

Again, were Handel-C to support some form of currying, we would be able to specify something

like the following:

124

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 125

macro proc VSFILTER (size,vectorofstreamsin,vectorofstreamsout,p)
{

VMAP (size,vectorofstreamsin,vectorofstreamsout,SFILTER(p));
}

However, we shall have to settle instead for expanding the definition of SFILTER into that of

VMAP, as shown in Figure 6.6.

macro proc VSFILTER (size,vectorofstreamsin,vectorofstreamsout,p)
{

typeof (size) c;
par (c=0;c<size;c++)
{

SFILTER_SIMPLE(vectorofstreamsin[c],vectorofstreamsout[c],p);
}

}

Figure 6.6: The Handel-C definition of the process VSFILTER.

6.3.8 Stream of Vectors

An implementation of tdfilter in terms of the stream of vectors would require a vector refinement

of filter. As we have already stated that we can not supply one of these, it follows that we are

also not able to provide a refinement of tdfilter in terms of the stream of vectors.

6.3.9 Vector of Vectors

As before, we can not supply a valid refinement of tdfilter in terms of the vector of vectors.

125

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 126

6.4 Unfold

The dual of fold presents itself to us in the form of the unfold function. This family of functions

are also known as anamorphisms. The unfold pattern is perhaps less well know than fold, however

some interesting exploration of its properties can be found in [15]. At the simplest level, the fold

family of functions reduce a sequence of values to return a single value. On the other hand, the

unfold functions can be seen as expanding a single value into a sequence of values. Unlike fold,

there doesn’t seem to have been a widely accepted definition of unfold, although the general func-

tionality should be the same regardless. The Haskell 98 standard library [37] includes a definition

for unfoldr which uses Haskell’s Maybe type:

unfoldr :: (B → Maybe (A,B)) → B → [A]

unfoldr f b = case f b of

Nothing → []

Just (a, b) → a : unfoldr f b

We shall instead use definitions which hinge on two functions passed as parameters. The first

is a simple predicate function which determines if a given value is a base value. This will provide

the guard for our recursion. We could instead pass a value here, and have unfold compare the

current value to this base value at each step, however, a function is obviously more general. The

second function performs a single step - given a value, it returns a pair of values, one representing

the value to be output at this step, and the other the value to calculate the next step from. As

with fold, we have both left directed and right directed implementations, and these shall have the

following type:

unfoldl :: (A → (A,B)) → (A → Bool) → A → [B]

unfoldr :: (A → (B,A)) → (A → Bool) → A → [B]

Definitions can be given as follows, firstly for the right directed version:

unfoldr f p a = if p a then []

else b : unfoldr f p c

where (b, c) = f a

Similarly for the left directed version:

unfoldl f p a = if p a then []

else unfoldl f p b ++ [c]

where (b, c) = f a

Interestingly, map can be specified in terms of unfoldr:

map f xs = unfoldr (λ(x : xs) • (f x, xs)) null xs

126

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 127

Often we shall not use unfold directly - it is in fact a very general pattern which captures the

behaviour of many other functions (See Sections 7.12, 7.14, and 7.15 for some examples of these).

However, to give an idea of its use we shall look at two examples below.

Example - Lists

It is an important property of an unfold operation that it is capable of ”undoing” a corresponding

fold operation. We may illustrate this relationship between fold and unfold by using them together

to construct the identity function on lists. That is to say, given functions g and p where:

g (f x y) = (x, y)

p x = (x == e)

We can then state:

unfoldr g p (foldr f e xs) = xs

unfoldl g p (foldl f e xs) = xs

Or, in other words:

unfoldr g p ◦ foldr f e = id[]

unfoldl g p ◦ foldl f e = id[]

We can provide concrete examples of these. First, for our right variant, we have:

f = (:)

g (x : xs) = (x, xs)

e = []

p x = x == []

Which gives us:

unfoldr (λ(x : xs) • (x, xs)) (== []) ◦ foldr (:) [] = id[]

Secondly, for our left variant we have:

f = flip (:)

g (x : xs) = (xs, x)

e = []

p x = x == []

Which gives us:

unfoldl (λ(x : xs) • (xs, x)) (== []) ◦ foldl (flip (:)) [] = id[]

127

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 128

Example - Binary Trees

Let us examine a slightly more sophisticated example. First, let us define a simple binary tree

type.

data Tree a = Bin a (Tree a) (Tree a) | Null

Next a simple operator to insert a single item into the correct position of the tree. This has

type:

(⊕) :: Ord a ⇒ a → Tree a → Tree a

...and we can define it as follows:

x⊕Null = Bin x Null Null

x⊕ (Bin y a b) = if x < y

then Bin y (x⊕ a) b

else Bin y a (x⊕ b)

Correspondingly, we shall also require a simple operator to remove a single item from the

tree. This should take in a tree, and return a pair. The first item of the pair is the lowest value

encountered in the tree, and the second item is the state of the tree after the removal. As such we

have the following type:

(ª) :: Tree a → (a, Tree a)

This can be defined as follows:

ª (Bin x Null b) = (x, b)

ª (Bin x a Null) = (v,Bin x t Null)

where (v, t) = ª a

Given these two operators, along with the fold and unfold functions, we can contract a binary

tree sort algorithm. The algorithm consists of two phases. First, we employ foldr to repeatedly

apply our operator (⊕) to construct a binary tree containing every item in the input list. In the

second phase, we deconstruct our intermediate tree, using unfoldr and our (ª) operator to remove

each item in order and add it to a list.

bsort = unfoldr (ª) (== Null) ◦ foldr (⊕) Null

Hopefully this example helps to give a feeling for the relationship between fold and unfold, as

well as giving a practical demonstration of how they can be used together.

128

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 129

6.4.1 Streams

In stream terms, we have two functions sunfoldl and sunfoldr with the following types:

sunfoldl :: (A → (B, A)) → (A → Bool) → A → bBc
sunfoldr :: (A → (B, A)) → (A → Bool) → A → bBc

For any definition of sunfoldr (or similarly for sunfoldl) to be considered a valid refinement

of unfoldr (or unfoldl) we shall require that the following diagram commutes:

A [B]

A bBc

6
id

6
absS

-unfoldr f p

-sunfoldr f p

Let us consider a definition of sunfoldr following the same lines as unfoldr.

sunfoldr f p a = if p a then bc
else b :̂ sunfoldr f p c

where (b, c) = f a

To prove this is a valid refinement, first for the base case (where p a is True), we have:

(unfoldr f p ◦ id) a {}
= unfoldr f p a {def. id}
= if p a then []

else b : unfoldr f p c

where (b, c) = f a {def. unfoldr}
= if p a then absS bc

else b : unfoldr f p c

where (b, c) = f a {def. absS}
= if p a then absS bc

else (fst (f a)) : unfoldr f p (snd (f a)) {def. where}
= (absS ◦ sunfoldr f p) a {def. sunfoldr}

Process Refinement

SUNFOLD-a
-b1, b2, ..., bn

-eot

Figure 6.7: The unfold process in stream terms.

129

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 130

As we have done previously, we shall begin by considering the simple case where we are dealing

with a ‘one dimensional’ stream of basic items - i.e. integers, booleans, etc. Taking first the right

directed variant, we can translate our recursive functional specification sunfoldr into an iterative

process, as follows:

SUNFOLDR(f, p) = in ? a →
µ X•
if (p a)

then out.eot ! True → SKIP

else (b, a) := f(a); out.value ! b;X

When we come to consider the refinement for our functional specification sunfoldl, we are faced

with similar issues to those faced when refining sfoldr. This is due to the list being generated in

reverse order. One way to solve this would be to pipe the stream to an instance of the SREV ERSE

process.

SUNFOLDL(f, p) = SUNFOLDR(f, p) À SREV ERSE

Alternatively, we could buffer the items locally, and then produce them when the predicate is

finally met. As was the case with the refinement of sfoldr, the consequence of this is that we need

to specify an upper limit in advance for the length of the outgoing stream.

For more general refinements of our unfold functions, we can move the responsibility for pro-

ducing the value b in the output stream to the process F . This would give us something like the

following:

SUNFOLDR(F, p) = in ? a →
µ X•
if (p a)

then out.eot ! True → SKIP

else F (&a)[out/out]; X

In this version, the process F is passed the current ‘state’ variable a. It then has the task

of applying a refinement of the original function f to that value, to create a new value for the

state variable a and a value b which it must output on the appropriate conduit. The ampersand &

here denotes that the parameter is passed by reference, so changes to a within F apply within the

scope of SUNFOLDR also. This refinement still lacks a little generality in that the input is still

restricted to being a simple item - the above definition would not support a stream or a vector as

input.

Handel-C Implementation

The Handel-C implementation may then proceed as follows, considering first the simple case.

Effectively, we keep the iterative behaviour of the CSP process, however, as a slight modification,

130

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 131

to fit with the standard scheme of an imperative while loop, we are in fact testing a negated

version of the predicate p. Ideally, to keep the behaviour simple and clean, we would like to refine

the function f to an expression. As Handel-C does not easily facilitate pairs of values as return

types of expressions, we shall instead have to refine f to a simple Handel-C macro proc. The

process f is passed the two state variables a and b by reference. It is tasked with deriving the new

value for a and b from the current value of a. The definition is given in Figure 6.8.

macro proc SUNFOLDR_SIMPLE (conduitin, streamout, f, p)
{

messagetype (conduitin) a;
messagetype (streamout) b;
conduitin ? a;
while (!p(a))
{

f (a,b);
streamout.valueconduit ! b;

}
streamout.eotconduit ! True;

}

Figure 6.8: The simple case definition of the process SUNFOLDR.

As noted above, for a more general version, we can move the responsibility for producing the

value b in the output stream to the process F . This gives us the definition supplied in Figure 6.9.

macro proc SUNFOLDR (conduitin, streamout, F, p)
{

messagetype (conduitin) a;
messagetype (streamout) b;
conduitin ? a;
while (!p(a))
{

F (streamout.valueconduit,a,b);
}
streamout.eotconduit ! True;

}

Figure 6.9: The general case definition of the process SUNFOLDR.

6.4.2 Vectors

In vector terms, we have two functions vunfoldl and vunfoldr with the following types:

vunfoldln :: (A → (B, A)) → (A → Bool) → A → 〈B〉n
vunfoldrn :: (A → (B, A)) → (A → Bool) → A → 〈B〉n

We are now working with a slightly different interpretation of our unfold refinements. The fixed

size nature of vectors requires that the size of the output vector is known in advance. As such, we

131

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 132

will only be able to make a refinement in this way where the size can be somehow predicted from

the input parameters.

For any definition of vunfoldr (or similarly for vunfoldl) to be considered a valid refinement

of unfoldr (or unfoldl) we shall require that the following diagram commutes:

A [B]

A 〈B〉n

6
id

6
absV

-unfoldr f p

-vunfoldrn f p

Let us consider a definition for vunfoldr which follows in an analogous fashion to that provided

in the stream case.

vunfoldrn f p a = if p a then 〈〉0
else b :̃n vunfoldrn−1 f p c

where (b, c) = f a

We could provide a similar proof here to that for sunfoldr, above. In practice, the predicate p

will have to return true at the point where n equals zero - this is the only scenario which allows

the above definition to be correctly typed. So in other words we have:

vunfoldr0 f p a = 〈〉0
vunfoldrn+1 f p a = b :̃n vunfoldrn f p c

where (b, c) = f a

In this definition, the function p ends up not actually being explicitly used. However, it will

factor into the decision made about the size of the output vector, along with the other two para-

meters.

Process Refinement

As noted above, the fixed size nature of vectors forces us to consider process refinements that

differ slightly in behaviour from our original functional specifications. We will have to know

somehow in advance that the characteristic predicate will return true after a certain number of

steps, thus defining the size of the output vector. In effect, the predicate is refined out of the actual

implementation altogether, however it does factor into our decision about the size of the output

vector.

As regards a CSP specification for this process, we shall see they take a similar form to those

supplied for the fold family of functions in vector terms. We again have a sequence of processes

composed together in parallel. The flow of data does differ, however. In vector implementations

of the fold variants, the individual component processes each took two inputs and produced one

132

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 133

? ? ?

Pinitial P2 Pn Pfinal

a- i1- i2- in−1- in-. . .

b1 b2 . . . bn

Figure 6.10: The process V UNFOLDR.

output. Correspondingly, for the unfold family, each component process takes one input and

produces two outputs. The components of a fold can be considered as merging operations, whereas

those of an unfold are splitting operations.

Recall that for unfoldr, the function f passed as a parameter will have the following type:

f :: A → (B, A)

Thus, a process F which refines this function is required, which should have the following

alphabet:

αF = {ina :: A, outb :: B, outa :: A}

This gives us the following alphabet for our process V UNFOLDR:

αV UNFOLDRn(F) = {in :: A, out :: 〈B〉n}

We can now construct our definition. For the most part, we are connecting each instance of F

with the corresponding element of the output vector, as well as the output of the previous instance

of F and the input to the next instance of F . This pattern changes slightly at either end, where

special cases are supplied.

V UNFOLDRn(F) =

Pinitial ||

n

||
i = 2

Pi

 ||Pfinal

 \{mid}

where

Pinitial = F [in/ina, out1/outb,mid1/outa]

Pi = F [midi−1/ina, outi/outb,midi/outa]

Pfinal = SINK[midn/in]

Now let us consider the left directed variant, which presents itself in the form of the process

V UNFOLDL. This is depicted in Figure 6.11.

We can provide a CSP specification for V UNFOLDL analogous to that for V UNFOLDR

above. As before, let us recall that for unfoldl, the function f passed as a parameter will have the

following type:

f :: A → (A,B)

133

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 134

? ? ?

Pfinal P1 Pn−1 Pinitial

in¾ in−1¾ i2¾ i1¾ a¾. . .

b1 . . . bn−1 bn

Figure 6.11: The process V UNFOLDL.

Thus, a process F which refines this function is required, which should have the following

alphabet:

αF = {ina :: A, outa :: A, outb :: B}

This gives us the following alphabet for our process V UNFOLDL:

αV UNFOLDLn(F) = {in :: A, out :: 〈B〉n}

We therefore have:

V UNFOLDLn(F) =

Pfinal ||

(n− 1)

||
i = 1

Pi

 ||Pinitial

 \{mid}

where

Pinitial = F [in/ina, outn/outb,midn/outa]

Pi = F [midi+1/ina, outi/outb,midi/outa]

Pfinal = SINK[mid1/in]

Handel-C Implementation

Closely following the CSP specification above, we have the implementation in Handel-C for VUNFOLDR

given in Figure 6.12.

macro proc VUNFOLDR (n,in,out,F)
{

conduittype(in) mid [n];
typeof(n) i;
par (i=0;i<=n;i++)
{

ifselect (i==0)
F (in,out[0],mid[0]);

else ifselect (i<n)
F (mid[i-1],out[i],mid[i]);

else
SINK (mid[n-1]);

}
}

Figure 6.12: The Handel-C definition of the process VUNFOLDR.

We can provide a similar definition for VUNFOLDL, as seen in Figure 6.13.

134

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 135

macro proc VUNFOLDL (n,in,out,F)
{

conduittype(in) mid [n];
typeof(n) i;
par (i=0;i<=n;i++)
{

ifselect (i==0)
SINK (mid[0]);

else ifselect (i<n)
F (mid[i+1],out[i],mid[i]);

else
F (in,out[n-1],mid[n-1]);

}
}

Figure 6.13: The Handel-C definition of the process VUNFOLDL.

6.5 Scan

The scan, or accumulate family of functions share certain characteristics with fold. They perform

reduction over a list by repeated application of a binary operator, like fold. However, whereas

a fold operation results in a single value, the scan family produces a list of all the intermediate

results. As with fold, we have both left and right directed variants, with and without base values.

Let us first define the types of all four variants:

scanl :: (A → B → A) → A → [B] → [A]

scanr :: (A → B → B) → B → [A] → [B]

scanl1 :: (A → A → A) → [A] → [A]

scanr1 :: (A → A → A) → [A] → [A]

Their functionality can be described informally, in terms of their corresponding fold operators,

as follows:

scanl (⊕) e [x1, x2, ..., xn]

= [(⊕→/ e) [], (⊕→/ e) [x1], (⊕→/ e) [x1, x2], ... , (⊕→/ e) [x1, x2, ..., xn]]

scanl1 (⊕) [x1, x2, ..., xn]

= [⊕⇁/ [x1], ⊕⇁/ [x1, x2], ... , ⊕⇁/ [x1, x2, ..., xn]]

scanr (⊕) e [x1, x2, ..., xn]

= [(⊕←/ e) [x1, x2, ..., xn], (⊕←/ e) [x2, x3, ..., xn], ... , (⊕←/ e) [xn], (⊕←/ e) []]

scanr1 (⊕) [x1, x2, ..., xn]

= [⊕↽/ [x1, x2, ..., xn], ⊕↽/ [x2, x3, ..., xn], ... , ⊕↽/ [xn]]

As an example, let us consider the act of summing the integers in the range 1 to 5:

135

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 136

scanl (+) 0 [1, 2, 3, 4, 5] = [0, 1, 3, 6, 10, 15]

scanr (+) 0 [1, 2, 3, 4, 5] = [15, 14, 12, 9, 5, 0]

scanl1 (+) [1, 2, 3, 4, 5] = [1, 3, 6, 10, 15]

scanr1 (+) [1, 2, 3, 4, 5] = [15, 14, 12, 9, 5]

As with the fold operators, and our other higher order functions, we shall find binary infix

versions of these functions useful on occasion. Here we have:

(⊕→// e)xs = scanl (⊕) e xs

(⊕←// e)xs = scanr (⊕) e xs

⊕⇁// xs = scanl1 (⊕) xs

⊕↽//xs = scanr1 (⊕) xs

It may be noted that formal definitions for the scan functions can be given in terms of inits

and tails, introduced in Section 7.12.

scanl (⊕) e xs = map (foldl (⊕) e) (inits xs)

scanr (⊕) e xs = map (foldr (⊕) e) (tails xs)

scanl1 (⊕) xs = map (foldl1 (⊕)) (inits+ xs)

scanr1 (⊕) xs = map (foldr1 (⊕)) (tails+ xs)

Or alternatively, we can write the above definitions in the point-free style:

scanl (⊕) e = map (foldl (⊕) e) ◦ inits

scanr (⊕) e = map (foldr (⊕) e) ◦ tails

scanl1 (⊕) = map (foldl1 (⊕)) ◦ inits+

scanr1 (⊕) = map (foldr1 (⊕)) ◦ tails+

In fact, it can be seen that the scan family of functions can also be expressed in terms of unfold

operations. We have:

scanl (⊕) e = ([e] ++) ◦ unfoldl (λ xs • (init xs, foldl (⊕) e xs)) null

scanr (⊕) e = (++ [e]) ◦ unfoldr (λxs • (foldr (⊕) e xs, tail xs)) null

scanl1 (⊕) = unfoldl (λxs • (init xs, foldl1 (⊕) xs)) null

scanr1 (⊕) = unfoldr (λxs • (foldr1 (⊕) xs, tail xs)) null

Let us now consider how we may derive refinements for these functions in stream and vector

terms.

6.5.1 Stream to Stream

Perhaps the most obvious refinement is to both input and output a stream. Here refinements for

our family of functions take on the following types:

136

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 137

sscanl :: (A → B → A) → A → bBc → bAc
sscanr :: (A → B → B) → B → bAc → bBc
sscanl1 :: (A → A → A) → bAc → bAc
sscanr1 :: (A → A → A) → bAc → bAc

We can provide definitions in terms of unfold operations, as follows:

sscanl (⊕) e = (bec+̂+) ◦ sunfoldl (λ s • (sinit s, sfoldl (⊕) e s)) snull

sscanr (⊕) e = (+̂+bec) ◦ sunfoldr (λ s • (sfoldr (⊕) e s, stail s)) snull

sscanl1 (⊕) = sunfoldl (λ s • (sinit s, sfoldl1 (⊕) s)) snull

sscanr1 (⊕) = sunfoldr (λ s • (sfoldr1 (⊕) s, stail s)) snull

Process Refinement

As has been already shown, the scan family of functions can in fact be implemented in terms of the

more general unfold family. This should make their refinement to processes fairly straightforward,

as we have already done a certain amount of the legwork..

In this scheme we have a family of scan processes which both input and output streams. the

right directed variant, in the form of the process SSCANR, is depicted in Figure 6.14.

bx1, x2, ..., xnc-
-eot

SSCANR

bx1 ⊕ (x2 ⊕ (...(xn−1 ⊕ (xn ⊕ e))...)),
x2 ⊕ (...(xn−1 ⊕ (xn ⊕ e))...),
...,
xn ⊕ e,
ec -

-eot

Figure 6.14: The process SSCANR.

Similarly, the left directed variant, which manifests itself in the form of the process SSCANL,

is depicted in Figure 6.15.

bx1, x2, ..., xnc-
-eot

SSCANL

be,
e⊕ x1,
...,
((...((e⊕ x1)⊕ x2)...)⊕ xn−2)⊕ xn−1),
(((...((e⊕ x1)⊕ x2)...)⊕ xn−2)⊕ xn−1)⊕ xnc-

-eot

Figure 6.15: The process SSCANL.

137

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 138

Recalling the relationships between the scan and unfold family of functions given in Sec-

tion 6.5.1:

sscanl (⊕) e = (bec+̂+) ◦ sunfoldl (λ s • (sinit s, sfoldl (⊕) e s)) snull

sscanr (⊕) e = (+̂+bec) ◦ sunfoldr (λ s • (sfoldr (⊕) e s, stail s)) snull

sscanl1 (⊕) = sunfoldl (λ s • (sinit s, sfoldl1 (⊕) s)) snull

sscanr1 (⊕) = sunfoldr (λ s • (sfoldr1 (⊕) s, stail s)) snull

We therefore have, for SSCANR1:

SSCANR1 (⊕) = SUNFOLDR(F, null)

F (xs) = out ! foldr1 (⊕) xs;

xs := tail xs

In a similar vein, for SSCANL1:

SSCANL1 (⊕) = SUNFOLDL(F, null)

F (xs) = out ! foldl1 (⊕) xs;

xs := init xs

6.5.2 Stream to Vector

Next we have the scenario where we are inputting a stream but outputting a vector. This gives us

the following types:

svscanln :: (A → B → A) → A → bBc → 〈A〉n+1

svscanrn :: (A → B → B) → B → bAc → 〈B〉n+1

svscanl1n :: (A → A → A) → bAc → 〈A〉n
svscanr1n :: (A → A → A) → bAc → 〈A〉n

Here we can supply the following definitions:

svscanl (⊕) e = (〈e〉1+̃+1,n) ◦ vunfoldln (λ s • (sinit s, sfoldl (⊕) e s)) snull

svscanr (⊕) e = (+̃+n,1〈e〉1) ◦ vunfoldrn (λ s • (sfoldr (⊕) e s, stail s)) snull

svscanl1 (⊕) = vunfoldln (λ s • (sinit s, sfoldl1 (⊕) s)) snull

svscanr1 (⊕) = vunfoldrn (λ s • (sfoldr1 (⊕) s, stail s)) snull

Process Refinement

This refinement of the scan functions is possibly the most useful of those we shall consider here.

The process SV SCANR is depicted in Figure 6.16.

6.5.3 Vector to Stream

Finally let us consider the option of inputting a vector and outputting a stream. We shall encounter

the following types:

138

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 139

? ? ? ?

Pinitial P2 Pn Pfinal
i1- i2- i3- in- in+1-. . .

r1 r2 . . . rn rn+1

i1 = bx1, x2, ..., xnc
i2 = bx2, x3, ..., xnc
i3 = bx3, x4, ..., xnc
in = bxnc
in+1 = bc

r1 = x1 ⊕ (x2 ⊕ (...(xn−1 ⊕ (xn ⊕ e))...))

r2 = x2 ⊕ (...(xn−1 ⊕ (xn ⊕ e))...)

rn = xn ⊕ e

rn+1 = e

Figure 6.16: The process SV SCANR.

vsscanln :: (A → B → A) → A → 〈B〉n → bAc
vsscanrn :: (A → B → B) → B → 〈A〉n → bBc
vsscanl1n :: (A → A → A) → 〈A〉n → bAc
vsscanr1n :: (A → A → A) → 〈A〉n → bAc

We would like to be able to supply definitions along the lines of the following:

vsscanln (⊕) e = (bec+̂+) ◦ sunfoldl (λ v • (vinit v, vfoldl (⊕) e v)) vnull

vsscanrn (⊕) e = (+̂+bec) ◦ sunfoldr (λ v • (vfoldr (⊕) e v, vtail v)) vnull

vsscanl1n (⊕) = sunfoldl (λ v • (vinit v, vfoldl1 (⊕) v)) vnull

vsscanr1n (⊕) = sunfoldr (λ v • (vfoldr1 (⊕) v, vtail v)) vnull

Unfortunately there are problems with supplying these kinds of definitions in this setting. The

vector handling functions require subscripts, but there are no subscripts we can provide that will

allow them to work in all required cases.

Conceptually though, this ought to be able to work. What is required here is something like

a partial vector. This could be achieved as simply as pairing a vector with a number, where the

number can range from zero up to the size of the vector. This number would designate how many

items in the vector are actually to be considered as active, and as such operations on these vectors

could be adjusted accordingly.

6.5.4 Vector to Vector

The next scheme we shall consider is one in which we both input and output a vector. Here

refinements for our family of functions take on the following types:

139

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 140

vscanln :: (A → B → A) → A → 〈B〉n → 〈A〉n+1

vscanrn :: (A → B → B) → B → 〈A〉n → 〈B〉n+1

vscanl1n :: (A → A → A) → 〈A〉n → 〈A〉n
vscanr1n :: (A → A → A) → 〈A〉n → 〈A〉n

As regards definitions of these functions, we shall be faced with the same issues as those en-

countered for the vector to stream case above.

140

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 141

6.6 Zmap

The function zmap is similar in essence to our well known function map. However, whereas map

applies the same function to every item in the list, our function zmap instead applies a unique

function to each item in the list. Informally we have:

zmapn (f1, f2, ..., fn) [x1, x2, ..., xn] = (f1 x1, f2 x2, ..., fn xn)

The name zmap here is derived from the similarity between this function and zipwith. A

similar kind of functionality to the above can be achieved with the following expression:

zipwith (λ f x • f x) [f1, f2, ..., fn] [x1, x2, ..., xn]

However, given that the functions to be applied to the list are contained in a list themselves,

they will have to all be of the same type. For a truly generic definition of zmap, we may prefer to

allow each of the functions to be of a different type. It is for this reason the functions are contained

in a tuple of size n. More formally, we have:

zmapn :: (A → B1, A → B2, ..., A → Bn) [A] = (B1, B2, ..., Bn)

6.6.1 Streams

A stream refinement for zmap simply replaces the input list with a stream. Informally, we have:

szmapn (f1, f2, ..., fn) bx1, x2, ..., xnc = (f1 x1, f2 x2, ..., fn xn)

To prove this is a valid refinement of zmapn, we require that the following diagram commutes:

[A] (B1, B2, ..., Bn)

bAc (B1, B2, ..., Bn)

6
absS

6
id

-zmapn fs

-szmapn fs

This should be straightforward to prove:

(zmapn (f1, f2, ..., fn) ◦ absS) bx1, x2, ..., xnc {id}
= zmapn (f1, f2, ..., fn) [x1, x2, ..., xn] {def. absS}
= (f1 x1, f2 x2, ..., fn xn) {def. zmap}
= szmapn (f1, f2, ..., fn) bx1, x2, ..., xnc {def. szmap}
= (id ◦ szmapn(f1, f2, ..., fn)) bx1, x2, ..., xnc {def. id}

141

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 142

6.6.2 Vectors

Our function zmap is well suited to vector refinement, given the inherently fixed size nature of the

operation. For our generic version, we have:

vzmapn (f1, f2, ..., fn) 〈x1, x2, ..., xn〉n = (f1 x1, f2 x2, ..., fn xn)

To prove this is a valid refinement of zmapn, we require that the following diagram commutes:

[A] (B1, B2, ..., Bn)

〈A〉n (B1, B2, ..., Bn)

6
absV

6
id

-zmapn fs

-vzmapn fs

This should be straightforward to prove:

(zmapn (f1, f2, ..., fn) ◦ absV) 〈x1, x2, ..., xn〉n {id}
= zmapn (f1, f2, ..., fn) [x1, x2, ..., xn] {def. absV }
= (f1 x1, f2 x2, ..., fn xn) {def. zmap}
= vzmapn (f1, f2, ..., fn) 〈x1, x2, ..., xn〉n {def. vzmap}
= (id ◦ vzmapn(f1, f2, ..., fn)) 〈x1, x2, ..., xn〉n {def. id}

6.7 Zfold

The function zfold maintains a similar relationship with fold to that between zmap and map

above. Whereas fold applies the same operator repeatedly to reduce a list of items, the function

zfold will apply a different operator at each juncture. Informally, we have:

zfoldn (⊕1,⊕2, ...,⊕n−1) [x1, x2, ..., xn] = x1 ⊕1 x2 ⊕2 ...⊕n−1 xn

As with the fold family, we shall find in practice we usually implement our generic zfold via

one of our four variants:

zfoldr :: (A → B1 → B2, A → B2 → B3, ..., A → Bn → Bn+1)

→ B1 → [A] → Bn+1

zfoldl :: (B1 → A → B2, B2 → A → B3, ..., Bn → A → Bn+1)

→ B1 → [A] → Bn+1

zfoldr1 :: (A → A → B1, A → B1 → B2, ..., A → Bn−2 → Bn−1)

→ [A] → Bn−1

zfoldl1 :: (A → A → B1, B1 → A → B2, ..., Bn−2 → A → Bn−1)

→ [A] → Bn−1

Their informal definitions are as follows:

142

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 143

zfoldr (⊕1,⊕2, ...,⊕n) e [x1, x2, ..., xn]

= x1 ⊕n (x2 ⊕n−1 (...⊕2 (xn ⊕1 e)))

zfoldl (⊕1,⊕2, ...,⊕n) e [x1, x2, ..., xn]

= (((e⊕1 x1)⊕2 x2)⊕3 ...)⊕n xn

zfoldr1 (⊕1,⊕2, ...,⊕n−1) [x1, x2, ..., xn]

= x1 ⊕n−1 (x2 ⊕n−2 (...⊕2 (xn−1 ⊕1 xn)))

zfoldl1 (⊕1,⊕2, ...,⊕n−1) [x1, x2, ..., xn]

= (((x1 ⊕1 x2)⊕2 x3)⊕3 ...)⊕n−1 xn

6.7.1 Streams

A stream refinement for zfold simply replaces the input list with a stream. Informally, we have:

szfoldn (⊕1,⊕2, ...,⊕n−1) bx1, x2, ..., xnc = x1 ⊕1 x2 ⊕2 ...⊕n−1 xn

To prove this is a valid refinement of zfoldn, we require that the following diagram commutes:

[A] B

bAc B

6
absS

6
id

-zfoldn fs

-szfoldn fs

This should be straightforward to prove:

(zfoldn (⊕1,⊕2, ...,⊕n−1) ◦ absS) bx1, x2, ..., xnc {id}
= zfoldn (⊕1,⊕2, ...,⊕n−1) [x1, x2, ..., xn] {def. absS}
= x1 ⊕1 x2 ⊕2 ...⊕n−1 xn {def. zfold}
= szfoldn (⊕1,⊕2, ...,⊕n−1) bx1, x2, ..., xnc {def. szfold}
= (id ◦ szfoldn(⊕1,⊕2, ...,⊕n−1)) bx1, x2, ..., xnc {def. id}

Similarly we shall have refinements in stream terms for all our zfold variants:

szfoldr :: (A → B1 → B2, A → B2 → B3, ..., A → Bn → Bn+1)

→ B1 → bAc → Bn+1

szfoldl :: (B1 → A → B2, B2 → A → B3, ..., Bn → A → Bn+1)

→ B1 → bAc → Bn+1

szfoldr1 :: (A → A → B1, A → B1 → B2, ..., A → Bn−2 → Bn−1)

→ bAc → Bn−1

szfoldl1 :: (A → A → B1, B1 → A → B2, ..., Bn−2 → A → Bn−1)

→ bAc → Bn−1

143

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 144

Their informal definitions are as follows:

szfoldr (⊕1,⊕2, ...,⊕n) e bx1, x2, ..., xnc
= x1 ⊕n (x2 ⊕n−1 (...⊕2 (xn ⊕1 e)))

szfoldl (⊕1,⊕2, ...,⊕n) e bx1, x2, ..., xnc
= (((e⊕1 x1)⊕2 x2)⊕3 ...)⊕n xn

szfoldr1 (⊕1,⊕2, ...,⊕n−1) bx1, x2, ..., xnc
= x1 ⊕n−1 (x2 ⊕n−2 (...⊕2 (xn−1 ⊕1 xn)))

szfoldl1 (⊕1,⊕2, ...,⊕n−1) bx1, x2, ..., xnc
= (((x1 ⊕1 x2)⊕2 x3)⊕3 ...)⊕n−1 xn

6.7.2 Vectors

As with zmap, the fixed size nature of our family of zfold functions make them well suited to

vector refinement. For our generic version, we have:

vzfoldn (⊕1,⊕2, ...,⊕n−1) 〈x1, x2, ..., xn〉n = x1 ⊕1 x2 ⊕2 ...⊕n−1 xn

To prove this is a valid refinement of zfoldn, we require that the following diagram commutes:

[A] B

〈A〉n B

6
absV

6
id

-zfoldn fs

-vzfoldn fs

This should be straightforward to prove:

(zfoldn (⊕1,⊕2, ...,⊕n−1) ◦ absV) 〈x1, x2, ..., xn〉n {id}
= zfoldn (⊕1,⊕2, ...,⊕n−1) [x1, x2, ..., xn] {def. absV }
= x1 ⊕1 x2 ⊕2 ...⊕n−1 xn {def. zfold}
= vzfoldn (⊕1,⊕2, ...,⊕n−1) 〈x1, x2, ..., xn〉n {def. vzfold}
= (id ◦ vzfoldn(⊕1,⊕2, ...,⊕n−1)) 〈x1, x2, ..., xn〉n {def. id}

Similarly we shall have refinements in vector terms for all of the zfold variants:

vzfoldr :: (A → B1 → B2, A → B2 → B3, ..., A → Bn → Bn+1)

→ B1 → 〈A〉n → Bn+1

vzfoldl :: (B1 → A → B2, B2 → A → B3, ..., Bn → A → Bn+1)

→ B1 → 〈A〉n → Bn+1

vzfoldr1 :: (A → A → B1, A → B1 → B2, ..., A → Bn−2 → Bn−1)

→ 〈A〉n → Bn−1

vzfoldl1 :: (A → A → B1, B1 → A → B2, ..., Bn−2 → A → Bn−1)

→ 〈A〉n → Bn−1

144

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 145

Their informal definitions are as follows:

vzfoldr (⊕1,⊕2, ...,⊕n) e 〈x1, x2, ..., xn〉n
= x1 ⊕n (x2 ⊕n−1 (...⊕2 (xn ⊕1 e)))

vzfoldl (⊕1,⊕2, ...,⊕n) e 〈x1, x2, ..., xn〉n
= (((e⊕1 x1)⊕2 x2)⊕3 ...)⊕n xn

vzfoldr1 (⊕1,⊕2, ...,⊕n−1) 〈x1, x2, ..., xn〉n
= x1 ⊕n−1 (x2 ⊕n−2 (...⊕2 (xn−1 ⊕1 xn)))

vzfoldl1 (⊕1,⊕2, ...,⊕n−1) 〈x1, x2, ..., xn〉n
= (((x1 ⊕1 x2)⊕2 x3)⊕3 ...)⊕n−1 xn

6.8 Divide and Conquer

Our set of higher order functions need not be limited to those commonly found implemented in

the standard libraries of functional compilers and interpreters. The discipline of Generic Program-

ming encourages us to consider many commonly occurring algorithmic paradigms as higher order

functions.

Perhaps the most intuitive and useful of such paradigms to treat in this manner is Divide

and Conquer. This paradigm works recursively. At each step, we split the problem up into sub-

problems. Each of these is then solved separately using a recursive application of the algorithm,

after which the results are combined in some manner. Clearly for any recursive algorithm to be

useful in practice, the recursion has to be guarded in some fashion. For this, any instance of the

Divide and Conquer algorithm must contain a ‘trivial case’. Each input presented to the algorithm

is first checked to see if it constitutes an instance of the trivial case. If so, a simple function is

applied to it to produce the output rather than it being split, solved and combined as usual.

The Divide and Conquer paradigm is an obvious candidate for parallelisation given that we

have sub-problems that can be dealt with independently, and therefore, we presume, in parallel.

One treatment of this of particular note is given in [57], where a combination of conventional

processors and reconfigurable logic devices are used to implement a Divide and Conquer based

sorting algorithm.

This behaviour, which spans a wide range of algorithms for solving many different problems,

can be encapsulated in a single higher order function:

dc tc isTC split combine input

= if isTC input

then tc input

else (combine ◦ map solve ◦ split) input

where solve = dc tc isTC split combine

As an example, let us consider the following definition of the factorial function:

145

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 146

factorial n = factorial′ (1, n)

factorial′ (n, len)

= if len ≤ 1

then n

else factorial′ (n, h) ∗ factorial′(n + h, len− h)

where h = len ‘div‘ 2

It is hopefully quite clear that this fits into the Divide and Conquer scheme. We have a trivial

case (where len is less than or equal to one), the splitting of the input into sub-problems (n, h)

and (n + h, len− h), recursive application to solve these problems, and finally combination of the

results, via multiplication.

We can therefore create an alternative definition for this factorial function as an instance of the

Divide and Conquer higher order function:

factorial n

= dc fst ((≤ 1) ◦ snd) fsplit (fold (∗)) (1, n)

fsplit (n, len) = [(n, h), (n + h, len− h)]

where h = div len 2

In order for further investigation of this higher order function to take place, it will be necessary

to clearly understand its type. The function dc takes four functions and a value as parameters.

The first function parameter is tc, the trivial case function. This deals with converting a value

of the input type (which matches the criteria of the trivial case) into the output type. Next,

the parameter isTC, a function which takes in a value of the input type and returns a boolean

determining whether or not this constitutes an instance of the trivial case. Third we have the

parameter split, which is required to split a single value of the input type into a list of values of

the same type which represent the sub-problems at a particular stage. Fourth is the parameter

combine which takes in a list of solved sub-problems, which are values of the output type, and

returns a single value of the output type. The fifth and final parameter is the input value itself.

Thus we have the following type:

dc :: (A → B) → (A → Bool) → (A → [A]) → ([B] → B) → A → B

Process Refinement

Let us consider how we might implement the divide and conquer scheme in the process environment.

The core piece of functionality in the definition of our dc pattern is the split / solve / combine

part. We have the following expression:

(combine ◦ map solve ◦ split) input

146

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 147

Given a refinement of split which can produce the sub-problems as a vector and a refinement

of combine which can accept the results as a vector, we are then in a position to exploit a vector

refinement of map to solve our sub-problems. This is depicted in Figure 6.17.

- SPLIT

¡
¡¡µ

-

@
@@R

SOLV E1

SOLV E2

...

SOLV En

@
@@R-

¡
¡¡µ

COMBINE -

Figure 6.17: The core of the Divide and Conquer algorithm.

So we have the following data refinement of our above expression:

(vcombinen ◦ vmapn solve ◦ vsplitn) input

Given the following types:

vsplitn :: A → 〈A〉n
solve :: A → B

vcombinen :: 〈B〉n → B

There is a convenient level of abstraction in the function solve. In our definition above for

the divide and conquer pattern this is implemented as a recursive application of the function

dc. However, looking at this in terms of a specification we have instead a function solve which

should have functionality equivalent to a recursive application of dc but need not necessarily be

implemented in that exact manner. So, solve should be able to return a correct solution to any

(sub) problem it may be presented with, but it need not necessarily be implemented recursively.

It is important to bear in mind that our target is a network of processes that will be implemented

on an FPGA. As such we are required to construct a network which is fixed and static. At first

glance we may determine that this does not suit the dynamic and recursive nature of the divide

and conquer paradigm. However, bearing in mind that any instance of solve can be replaced with

any function which is capable of solving the sub-problem, we are of course at liberty to implement

some instances of solve sequentially rather than in parallel. In effect this enables us to expand

instances of solve into parallel (split / solve / combine) patterns, to the extent we are allowed

by available resources. Those that cannot be implemented in parallel due to lack of resources are

instead implemented sequentially.

Many divide and conquer implementations are actually quite regular and predictable in their

behaviour. It is quite common for the split function to return a constant number of sub-problems,

for example. This is demonstrated in our implementation of factorial above - here we always create

exactly two sub-problems every time fsplit is applied. Clearly this is a desirable characteristic if

147

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 148

- SPLIT

¡
¡

¡
¡¡µ

-

@
@

@
@@R

SP
¡¡µ-

@@R

S1

S2...
Sn

@@R-

¡¡µ
CO

SP
¡¡µ-

@@R

S1

S2...
Sn

@@R-

¡¡µ
CO

...

SP
¡¡µ-

@@R

S1

S2...
Sn

@@R-

¡¡µ
CO

@
@

@
@@R
-

¡
¡

¡
¡¡µ

COMBINE -

Figure 6.18: The expanded Divide and Conquer process expanded to two levels.

we are to transmit the sub-problems as a vector - at the very least we will require an upper bound.

Additionally for some problems we may be able to predict, perhaps based on the size of the input,

a minimal level of recursion at which the trivial case can occur. Such constraints will prove very

useful in designing an appropriate process network.

To illustrate the expansion of solve we have two examples. In the simplest case, we expand

just one level, as demonstrated in Figure 6.17. Here we can assume that each component SOLV Ei

is implemented sequentially. Taking this one step further, we can expand two levels, as depicted

in Figure 6.18. For simplicity’s sake, the treatment of the trivial case is not dealt with in these

illustrations. There are several possible approaches to this. As already noted, for certain imple-

mentations it may be predictable in advance that the trivial case will not occur until the nth level

of expansion, in which case we can implement solve with just the split/solve/combine pattern. Al-

ternatively, we may wish to add a ‘bypass’ onto each occurrence of the split/solve/combine pattern

which checks the input for the trivial case, and acts accordingly. This is of course not always ideal

as it may result in a significant of amount of redundant hardware. For certain problems it may be

possible to deal with the trivial case using the split/solve/combine pattern.

To summarise, we have, in general terms, the following network of processes for the split/solve/combine

phase of the divide and conquer algorithm.

V SPLITn Àn V MAPn(SOLV E) Àn V COMBINE

An implementation of a divide an conquer algorithm - quick sort - is explored further in Sec-

tion 9.2.3.

The resulting implementation expresses what we naturally assume to be a dynamic paradigm in

a static manner. Indeed, in this work in general we restrict ourselves to considering implementations

which can be expressed statically. See the section on future work (Section 10.1) for a further

discussion of these issues.

148

CHAPTER 6. A LIBRARY OF PROVABLY CORRECT RE-USABLE HARDWARE
COMPONENTS 149

6.9 Summary

In this chapter we have presented process refinements for a number of higher order functions, which

between them cover a very wide range of functionality. We have considered implementations for

each of them in terms of both the data parallel and sequential schemes (i.e. vectors and streams).

In effect we now have a library of ‘off the shelf’ components, ready to use, which may be employed

as the building blocks for our parallel hardware implementations.

149

Chapter 7

Refinement of List Processing

Functions

7.1 Introduction

In addition to the higher order functions already explored, we will often find useful a number

of list processing functions usually provided in functional languages. These will be explored in

this chapter. To begin with we look at some basic operators such as construct (:), concatenate

(++), length and null; these are essential for expressing basic list functionality and we examine

here how they may be refined to the stream and vector settings. After this we take a look at

list comprehensions, and examine how this convenient form of notation can be decomposed into

compositional forms as part of the refinement process. Following on from there we take a look at

some simple one dimensional functions used on lists, such as zip, take, drop, init and tail. We

examine how each of these can be refined into the stream and vector setting. Towards the end

of the chapter we look at some more sophisticated combinatorial list processing functions, such

as inits and tails, Cartesian product, transpose, segments and splits. Many of these result in

quadratic sized output, and we need to think carefully about how they are to be refined if we wish

to ensure an efficient resulting implementation. As we shall see in this chapter, a common pattern

emerges amongst many of these combinatorial functions, and one particular higher order function

- unfold - proves very useful in providing scalable implementations for these components.

7.2 Construct

In list terms, the construct function (:), sometimes pronounced cons or conz, forms the basic

mechanism for building lists. It takes a single item on the left hand side, and a list on the right,

and returns a list with that item at the head of the given list. In other words:

150

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 151

a : [x1, x2, ..., xn] = [a, x1, x2, ..., xn]

The type of this operator is as follows:

(:) :: A → [A] → [A]

We shall find it useful to have a refinement of this operator in both stream and vector terms.

7.2.1 Streams

First, the stream case. Here we have an operator :̂ (pronounced s-cons), which has the following

type signature:

(̂:) :: A → bAc → bAc

Informally, the definition is as above:

a :̂ bx1, x2, ..., xnc = ba, x1, x2, ..., xnc

To prove this is a valid refinement of cons, we shall require that the following diagram commutes.

[A] [A]

bAc bAc

6
absS

6
absS

-(a :)

-(â:)

The proof here is straightforward:

((a :) ◦ absS) bx1, x2, ..., xnc {id}
= a : [x1, x2, ..., xn] {def. absS}
= [a, x1, x2, ..., xn] {def. :}
= absS ba, x1, x2, ..., xnc {def. absS}
= absS (a :̂ bx1, x2, ..., xnc) {def. :̂}
= (absS ◦ (a :̂)) bx1, x2, ..., xnc {def. ◦}

7.2.2 Vectors

In the vector case, we follow a similar procedure. Here, our operator :̃n (pronounced v-cons-n) has

the following type:

(:̃n) :: A → 〈A〉n → 〈A〉n+1

151

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 152

We have the following informal definition:

a :̃n 〈x1, x2, ..., xn〉n = 〈a, x1, x2, ..., xn〉n+1

To prove this is a valid refinement of cons, we shall require that the following diagram commutes.

[A] [A]

〈A〉n 〈A〉n+1

6
absV

6
absV

-(a :)

-(a:̃n)

The proof here is straightforward, and analogous to that for the stream refinement of cons:

((a :) ◦ absV) 〈x1, x2, ..., xn〉n {id}
= a : [x1, x2, ..., xn] {def. absV }
= [a, x1, x2, ..., xn] {def. :}
= absV 〈a, x1, x2, ..., xn〉n+1 {def. absV }
= absV (a :̃n 〈x1, x2, ..., xn〉n) {def. :̃n}
= (absV ◦ (a :̃n)) 〈x1, x2, ..., xn〉n {def. ◦}

7.3 Concatenate

The other important basic operator in list terms is the concatenate operator (++). This joins two

lists together as follows:

[x1, x2, ..., xn] ++ [y1, y2, ..., yn] = [x1, x2, ..., xn, y1, y2, ..., yn]

It may be useful to note also the following relationships between the concatenate operator and

the empty list:

xs ++ [] = xs

[] ++ ys = ys

The concatenate operator has the following type:

(++) :: [A] → [A] → [A]

Let us also consider a generalised version of (++) which is usually called concat. Whereas our

operator (++) concatenates just two lists together, our function concat will concatenate an entire

list of lists together. This has type:

concat :: [[A]] → [A]

A definition is usually given in terms of fold, as follows:

152

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 153

concat = fold (++)

As with the construct operator, we shall find stream and vector refinements of these functions

useful.

7.3.1 Streams

In stream terms we have an operator (+̂+), which refines (++). This has type:

(+̂+) :: bAc → bAc → bAc

It can be informally defined as follows:

bx1, x2, ..., xnc +̂+ by1, y2, ..., ync = bx1, x2, ..., xn, y1, y2, ..., ync

To prove this is a valid refinement of (++), we shall require that the following diagram commutes.

It may be useful to first recall the definition of abs2S , introduced in Section 3.6.2:

abs2S (xs, ys) = (absS xs, absS ys)

Now, the diagram:

([A], [A]) [A]

(bAc, bAc) bAc

6
abs2S

6
absS

-uncurry(++)

-uncurry(+̂+)

Where the function uncurry, useful for dealing with pairs and binary operators, is defined as

follows:

uncurry f (a, b) = f a b

The proof of the validity of this refinement is straightforward:

(uncurry (++) ◦ abs2S) (bx1, x2, ..., xnc, by1, y2, ..., ymc) {id}
= uncurry (++) ([x1, x2, ..., xn], [y1, y2, ..., ym]) {def. abs2S}
= [x1, x2, ..., xn] ++ [y1, y2, ..., ym] {def. uncurry}
= [x1, x2, ..., xn, y1, y2, ..., ym] {def. ++}
= absS bx1, x2, ..., xn, y1, y2, ..., ymc {def. absS}
= absS (bx1, x2, ..., xnc +̂+ by1, y2, ..., ymc) {def. +̂+}
= absS (uncurry (+̂+) (bx1, x2, ..., xnc, by1, y2, ..., ymc)) {def. uncurry}
= (absS ◦ uncurry (+̂+)) (bx1, x2, ..., xnc, by1, y2, ..., ymc) {def. ◦}

153

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 154

The use of uncurry and abs2S may slightly obfuscate the purpose of this proof. So, to clarify,

we have:

(uncurry (++) ◦ abs2S) (xs, ys) = (absS ◦ uncurry (+̂+))(xs, ys)

{id}
≡ uncurry (++) (absS xs, absS ys) = (absS ◦ uncurry (+̂+))(xs, ys)

{def. abs2S}
≡ absS xs ++ absS ys = absS (xs +̂+ ys)

{def. uncurry}

We should by now have been thoroughly reassured that (+̂+) is indeed a valid refinement in

stream terms for (++). Let us consider how we may generalise this. Our concatenate operators

(++ and +̂+) will concatenate together two lists or two streams respectively. In the case where we

wish to concatenate an entire sequence of lists or streams, we can of course make use of a fold (or

indeed sfold) operation. So, given that we have the proven equivalence in the case of two streams:

absS xs ++ absS ys = absS (xs +̂+ ys)

We wish to prove this may be generalised to the following, for a list of streams1:

concat ◦ map absS = absS ◦ fold (+̂+)

Or, in other words:

fold (++) ◦ map absS = absS ◦ fold (+̂+)

That is to say, we wish to prove the following diagram commutes:

[[A]] [A]

[bAc] bAc

6
map absS

6
absS

-fold (++)

-fold (+̂+)

The proof of this is given below:
1This is a rather unusual type, however, it is useful conceptually. We are using the list here in a generic sense to

represent simply a collection of streams.

154

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 155

(fold (++) ◦ map absS) [s1, s2, ..., sn] {id}
= fold (++) [absS s1, absS s2, ..., absS sn] {def. map}
= absS s1 ++ absS s2 ++ ... ++ absS sn {def. fold}
= (absS (s1 +̂+ s2)) ++ ... ++ absS sn {ref. +̂+}
= (absS (s1 +̂+ s2 +̂+ s3)) ++ ... ++ absS sn {ref. +̂+}

{...}
= absS (s1 +̂+ s2 +̂+ ... +̂+ sn) {ref. +̂+}
= (absS ◦ fold (+̂+)) [s1, s2, ..., sn] {def. fold}

Let us also consider a similar generalisation in purely stream terms. That is to say we wish to

prove that concat which concatenates a list of lists is correctly refined by sconcat which concatenates

a stream of streams. We have:

sconcat = fold (+̂+)

For this to be deemed a valid refinement of concat, we require the following diagram to commute:

[[A]] [A]

bbAcc bAc

6
absSS

6
absS

-concat

-sconcat

We shall see that the proof follows similar lines to the above.

(concat ◦ absSS) bs1, s2, ..., snc {id}
= (fold (++) ◦ absSS) bs1, s2, ..., snc {def. concat}
= fold (++) [absS s1, absS s2, ..., absS sn] {def. absSS}
= absS s1 ++ absS s2 ++ ... ++ absS sn {def. fold}
= (absS (s1 +̂+ s2)) ++ ... ++ absS sn {ref. +̂+}
= (absS (s1 +̂+ s2 +̂+ s3)) ++ ... ++ absS sn {ref. +̂+}

{...}
= absS (s1 +̂+ s2 +̂+ ... +̂+ sn) {ref. +̂+}
= (absS ◦ sfold (+̂+)) bs1, s2, ..., snc {def. sfold}
= (absS ◦ sconcat) bs1, s2, ..., snc {def. sconcat}

So, we now have the equivalence:

fold (++) ◦ absSS = absS ◦ sfold (+̂+)

155

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 156

7.3.2 Vectors

In vector terms we have an operator (+̃+n,m), which refines (++). This has type:

(+̃+n,m) :: 〈A〉n → 〈A〉m → 〈A〉n+m

It can be informally defined as follows:

〈x1, x2, ..., xn〉n +̃+n,m 〈y1, y2, ..., ym〉m = 〈x1, x2, ..., xn, y1, y2, ..., ym〉n+m

The proof that this is a valid refinement will require the following diagram to commute:

([A], [A]) [A]

(〈A〉n, 〈A〉m) 〈A〉n+m

6
abs2V

6
absS

-uncurry(++)

-uncurry(+̃+n,m)

We shall see the proof itself follows along the same lines as in the stream case:

(uncurry (++) ◦ abs2V) (〈x1, x2, ..., xn〉n, 〈y1, y2, ..., ym〉m) {id}
= uncurry (++) ([x1, x2, ..., xn], [y1, y2, ..., ym]) {def. abs2V }
= [x1, x2, ..., xn] ++ [y1, y2, ..., ym] {def. uncurry}
= [x1, x2, ..., xn, y1, y2, ..., ym] {def. ++}
= absV 〈x1, x2, ..., xn, y1, y2, ..., ym〉n+m {def. absS}
= absV (〈x1, x2, ..., xn〉n +̃+n,m 〈y1, y2, ..., ym〉m) {def. +̃+n,m}
= absV (uncurry (+̃+n,m) (〈x1, x2, ..., xn〉n, 〈y1, y2, ..., ym〉m) {def. uncurry}
= (absV ◦ uncurry (+̃+n,m)) (〈x1, x2, ..., xn〉n, 〈y1, y2, ..., ym〉m) {def. ◦}

The use of uncurry and abs2V may slightly obfuscate the purpose of this proof. Let us clarify

the relationship between ++ and +̃+n,m a little. Given two vectors xs and ys, of length n and m

respectively, we have:

(uncurry (++) ◦ abs2V) (xs, ys) = (absV ◦ uncurry (+̃+n,m))(xs, ys)

{id}
≡ uncurry (++) (absV xs, absV ys) = (absV ◦ uncurry (+̃+n,m))(xs, ys)

{def. abs2V }
≡ absV xs ++ absV ys = absV (xs +̃+n,m ys)

{def. uncurry}

The task of constructing a generalised version of this relationship will not be as straightforward

as it was in the stream case. This is because the vector concatenate operator has to be ‘specialised’

to the size of its inputs. As an example, consider the following vector of vectors:

156

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 157

〈〈a1, a2, ..., an〉m, 〈b1, b2, ..., bn〉m, 〈c1, c2, ..., cn〉m〉3

This would require two applications of our concatenate operator to reduce it to a single vector,

which may proceed as follows (assuming evaluation proceeds from left to right - we have the same

issue either way):

(〈a1, a2, ..., an〉m ˜++m,m 〈b1, b2, ..., bn〉m) ˜++2m,m 〈c1, c2, ..., cn〉m

The problem here is that we are dealing with two different concatenate operators. The left

hand operator will take two m sized vectors as operands, whereas the right hand operator takes

one of size m, but one of (2×m). Given that we are in the vector setting the size of the inputs of

any given function form an integral part of its definition. In other words:

(n 6= p ∨m 6= q) ⇒ +̃+n,m 6= +̃+p,q

So, given the obvious definition for vector of vector concatenation:

vconcatn,m = vfoldn (+̃+a,b)

There is no possible value of a and b that will work for any size n greater than two. In effect,

we can not use the above definition as is. Let us consider an alternative. First, let us state clearly

our requirements. For any definition of vconcat to be considered a valid refinement of concat, we

require that the following diagram commutes:

[[A]] [A]

〈〈A〉n〉m 〈A〉n×m

6
absV V

6
absV

-concat

-vconcat

7.4 Length

The function length simply returns the number of items present in a list. It has type:

length :: [A] → Int

Its functionality can be described informally as follows:

length [x1, x2, ..., xn] = n

More formally, definitions are often given recursively:

157

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 158

length [] = 0

length (x : xs) = 1 + length xs

Alternatively, in terms of foldl:

length = foldl (λn x • n + 1) 0

7.4.1 Streams

In stream terms we have a function slength with the following type:

slength :: bAc → Int

We can provide an equivalent informal definition to that for length:

slength bx1, x2, ..., xnc = n

Given a stream refinement of foldl in the form of sfoldl, we may also supply the following

definition:

slength = sfoldl (λ n x • n + 1) 0

For this to be considered a valid refinement of length, we require the following diagram to

commute:

[A] Int

bAc Int

6
absS

6
id

-length

-slength

Given the proof that sfoldl is a valid refinement of foldl presented in Section 5.3.1, this proof

should be fairly trivial:

(length ◦ absS) bx1, x2, ..., xnc {id}
= (foldl (λn x • n + 1) 0 ◦ absS) bx1, x2, ..., xnc {def. length}
= (id ◦ sfoldl (λn x • n + 1) 0) bx1, x2, ..., xnc {ref. sfoldl}
= (id ◦ slength) bx1, x2, ..., xnc {def. slength}

7.4.2 Vectors

In vector terms we have a function vlength with the following type:

vlengthn :: 〈A〉n → Int

158

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 159

We can provide a definition in terms of a fold operation, as before:

vlengthn = vfoldln (λ n x • n + 1) 0

We can also provide a definition equivalent to the informal one given for length:

vlengthn 〈x1, x2, ..., xn〉n = n

In fact, given that the input vector is of fixed size, the length will be implicit from the type, so

for any vector v we can write simply:

vlengthn v = n

Proof that this is a valid refinement of length requires that the following diagram commutes:

[A] Int

〈A〉n Int

6
absV

6
id

-length

-vlengthn

We can prove this as follows:

(length ◦ absV) 〈x1, x2, ..., xn〉n {id}
= length [x1, x2, ..., xn] {def. absV }
= n {def. length}
= vlengthn 〈x1, x2, ..., xn〉n {def. vlengthn}
= (id ◦ vlengthn) 〈x1, x2, ..., xn〉n {def. id}

7.5 Null

The function null simply determines whether or not a given list is empty. It has type:

null :: [A] → Bool

It can be defined as follows:

null [] = True

null (x : xs) = False

Alternatively we might define it as:

null xs = if (xs == []) then True else False

Or indeed, even more succinctly, given that (xs == []) is an expression which will return a

boolean, we may write simply:

159

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 160

null xs = (xs == [])

The most succinct definition of all is point-free, and is achieved simply by creating a section

from the equality operator and the empty list:

null = (== [])

7.5.1 Streams

In stream terms we have a function snull which allows us to determine whether or not a stream is

empty. This has type:

snull :: bAc → Bool

We shall define it as follows:

snull s = (s == bc)

To prove this is a valid refinement of null, we shall require the following diagram to commute:

[A] Bool

bAc Bool

6
absS

6
id

-null

-snull

The proof here should be simple to construct:

(null ◦ absS) bx1, x2, ..., xnc {id}
= null [x1, x2, ..., xn] {def. absS}
= [x1, x2, ..., xn] == [] {def. null}
= [x1, x2, ..., xn] == (absS bc) {def. absS}
= (absS bx1, x2, ..., xnc) == (absS bc) {def. absS}
= bx1, x2, ..., xnc == bc {def. ==}
= (== bc) bx1, x2, ..., xnc {}
= (id ◦ (== bc)) bx1, x2, ..., xnc {id}
= (id ◦ snull) bx1, x2, ..., xnc {def. snull}

7.5.2 Vectors

In vector terms we have a function vnull which allows us to determine whether or not a vector is

empty. This has type:

160

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 161

vnulln :: 〈A〉n → Bool

The definition shall not follow quite the same lines as that for the stream case. This is because

we can not compare any arbitrary vector with the empty vector. That is to say, the type of the

empty vector 〈A〉0 is not equivalent to the type 〈A〉n, where n is any value other than zero. Instead

we can express our function as follows:

vnulln v = vlengthn v == 0

To prove this is indeed a valid refinement of null, we shall require that the following diagram

commutes:

[A] Bool

〈A〉n Bool

6
absV

6
id

-null

-vnulln

(null ◦ absV) 〈x1, x2, ..., xn〉n {id}
= null [x1, x2, ..., xn] {def. absV }
= [x1, x2, ..., xn] == [] {def. null}
= (length [x1, x2, ..., xn]) == (length []) {see below}
= (length [x1, x2, ..., xn]) == 0 {length []}
= ((length ◦ absV) 〈x1, x2, ..., xn〉n) == 0 {def. absV }
= ((id ◦ vlengthn) 〈x1, x2, ..., xn〉n) == 0 {ref. vlengthn}
= ((== 0) ◦ id ◦ vlengthn) 〈x1, x2, ..., xn〉n {def. ◦}
= (id ◦ (== 0) ◦ vlengthn) 〈x1, x2, ..., xn〉n {def. id}
= (id ◦ vnulln) 〈x1, x2, ..., xn〉n {def. vnull}

To justify the fourth line of the above proof, we may wish to consider briefly the nature of

equality in terms of lists. We wish to prove that given two lists where one is known to be empty,

the act of comparing them for equality is equivalent comparing their lengths. A short proof should

reassure us of this.

(xs == ys) ∧ (ys == []) {id}
= (xs == []) ∧ (ys == []) {}
= (length xs == 0) ∧ (length ys == 0) {def. length}
= (length xs) == (length ys) {}

161

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 162

7.6 List Comprehensions

List comprehensions often provide a very intuitive and succinct mechanism for specifying parts

of certain algorithms. We may therefore occasionally encounter such constructs, and will find it

useful to have a few simple transformation rules to help deal with them. The majority of the rules

presented here are well known properties of list comprehensions, and can be found in [20].

The most basic form of list comprehension is as follows:

[x | x ← [x1, x2, ..., xn]]

This is in effect equivalent to the identity function on lists:

[x | x ← xs] = id xs {LC1}

The next most basic form of list comprehension simply applies some function to a list, for

example:

[x× 2 | x ← [x1, x2, ..., xn]]

This is clearly equivalent to map, and so we have our first rule:

[f x | x ← xs] = map f xs {LC2}

List comprehensions can also include a predicate:

[x | x ← [x1, x2, ..., xn], x ≤ 10]

This is equivalent to a filter, giving us our second rule:

[x | x ← xs, p x] = filter p xs {LC3}

These can of course be used in conjunction, for example:

[f x | x ← [x1, x2, ..., xn], p x]

This corresponds to a composition of map and filter, as follows:

[f x | x ← xs, p x] = (map f ◦ filter p) xs {LC4}

List comprehensions may include more than one generator. Take for example:

[(x, y) | x ← [x1, x2, ..., xn], y ← [y1, y2, ..., ym]]

The results here will be of length (n×m). The first m values will be x1 paired with every item

in ys, The next m will be x2 paired with every item in ys and so on. We can consider this result

162

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 163

instead as the concatenation of n sub-lists, each sub-list comprising an item from xs paired with

every item from ys. This gives us a mechanism to decompose our list comprehension:

[f x y | x ← xs, y ← ys] = fold (++) [[f x y | y ← ys] | x ← xs] {LC4}

Where any predicates are present, these move with their associated generators:

[f x y | x ← xs, y ← ys, p x, q y]

= fold (++) [[f x y | y ← ys, q y] | x ← xs, p x] {LC5}

We can also generalise this rule to apply to a list comprehension with any number of generators:

[f a b c ... | a ← as, b ← bs, c ← cs, ...]

= fold (++) [[f a b c ... | b ← bs, c ← cs, ...] | a ← as] {LC6}

Note carefully how in {LC4} above we are required to re-order the generators, in order to

preserve the order of values in the output, when refactoring in this manner. Were the generators

not re-ordered in this manner we would effectively be transposing the list. See Section 7.15 for a

discussion of the function transpose. This gives rise to the following rule:

[f x y | x ← xs, y ← ys] = (fold (++) ◦ transpose) [[f x y | x ← xs] | y ← ys] {LC7}

Given these rules, we can transform a fairly complex list comprehension into a collection of

map, filter and fold functions. Let us give an example.

[f x y | x ← xs, y ← ys, p x, q y] {}
= fold (++) [[f x y | y ← ys, q y] | x ← xs, p x] {LC5}
= fold (++) [(map (f x) ◦ filter q) ys | x ← xs, p x] {LC4}
= fold (++) (map (λx • (map (f x) ◦ filter q) ys) ◦ filter p) xs {LC4}
= fold (++) (map (λx •map (f x) (filter q ys)) ◦ filter p) xs {def. ◦}
= fold (++) (map (λx • (f x) ‘map‘ (filter q ys)) ◦ filter p) xs {def. ‘map‘}
= fold (++) (map (λx • (f x) ∗ (filter q ys)) ◦ filter p) xs {def. ∗ }
= fold (++) (map (λx • (∗ (filter q ys)) (f x)) ◦ filter p) xs { ∗ section}
= fold (++) (map (λx • ((∗ (filter q ys)) ◦ f) x) ◦ filter p) xs {def. ◦}
= fold (++) (map ((∗ (filter q ys)) ◦ f) ◦ filter p) xs {def. λ}

7.7 Zip

The function zip is, in a sense, similar to the concatenate operator in that it provides us a mech-

anism for combining together the values of two lists. However, whereas the concatenate operator

appends one list onto the end of another, zip takes each item from one list, and pairs it with the

item at the same index in the other list. Additionally the two lists passed to zip do not necessarily

have to be of the same type. Informally, we can describe this functionality as follows:

163

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 164

zip [x1, x2, ..., xn] [y1, y2, ..., ym] = [(x1, y1), (x2, y2), ..., (xn↓m, yn↓m)]

Here the binary minimum (↓) operator, pronounced min is used to determine the shortest of

the two lengths n and m. The zip function has the following type:

zip :: [A] → [B] → [(A,B)]

A definition for zip is usually given recursively. For example:

zip as [] = []

zip [] bs = []

zip (a : as) (b : bs) = (a, b) : zip as bs

Alternatively we can supply a single statement definition, along the lines of the following:

zip as bs = if (null as ∨ null bs)

then []

else (head as, head bs) : zip (tail as) (tail bs)

However, it is perhaps a less well known fact that zip can be defined in terms of an unfold

operation. This should become obvious after brief comparison between the above definition of zip

and that for unfoldr. Thus, we have:

zip xs ys = unfoldr f p (xs, ys)

where f (a : as, b : bs) = ((a, b), (as, bs))

p (a, b) = null a ∨ null b

Or alternatively, without any pattern matching we have:

zip xs ys = unfoldr f p (xs, ys)

where f (a, b) = ((head a, head b), (tail a, tail b))

p (a, b) = null a ∨ null b

7.7.1 Streams

Considering a stream refinement of zip, we have a function szip, of the following type:

szip :: bAc → bBc → b(A,B)c

Informally, its functionality mimics that of zip:

szip bx1, x2, ..., xnc by1, y2, ..., ymc = b(x1, y1), (x2, y2), ..., (xn↓m, yn↓m)c

To prove that this is a valid refinement of zip, we will require a diagram, similar to that used

for concatenate, to commute:

164

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 165

([A], [B]) [(A,B)]

(bAc, bBc) b(A,B)c

6
abs2S

6
absS

-uncurry zip

-uncurry szip

Proof that this is a valid refinement may then proceed as follows:

(uncurry zip ◦ abs2S) (bx1, x2, ..., xnc, by1, y2, ..., ymc) {id}
= uncurry zip ([x1, x2, ..., xn], [y1, y2, ..., ym]) {def. abs2S}
= zip [x1, x2, ..., xn] [y1, y2, ..., ym] {def. uncurry}
= [(x1, y1), (x2, y2), ..., (xn↓m, yn↓m)] {def. zip}
= absS b(x1, y1), (x2, y2), ..., (xn↓m, yn↓m)c {def. absS}
= absS (szip bx1, x2, ..., xnc by1, y2, ..., ymc) {def. szip}
= absS (uncurry szip (bx1, x2, ..., xnc, by1, y2, ..., ymc)) {def. uncurry}
= (absS ◦ uncurry szip) (bx1, x2, ..., xnc, by1, y2, ..., ymc) {def. ◦}

Process Refinement

In process terms, we have a process which inputs two streams and outputs one stream containing

items from the two input streams paired together. This is illustrated in Figure 7.1.

SZIP

-x1, x2, ..., xn

-eotx

-y1, y2, ..., ym

-
eoty

-
(x1, y1), (x2, y2), ..., (xn↓m, yn↓m)

-eot

Figure 7.1: The zip process for streams.

Let us consider a CSP definition of this process. In the functional definition of zip, we can

see that computation is terminated when either of the inputs lists is empty. This should translate

fairly easily to the world of processes, as it will correspond to checking the eot channel. When

an item remains in both input lists we can consume them and output a corresponding pair. In

process terms, a slight complication may arise from this given that the two input streams operate

independently of each other, and may be of differing lengths. Consider the definition given in

Figure 7.2.

This definition is subject to an obvious flaw wherever the stream arriving on yin is shorter than

the stream arriving on xin. After consuming a value from xin we are stuck in a one way path

- and if the stream from yin has finished we will never receive a value from yin. In strict CSP

terms, none of the options in this choice have precedence. So, consider the situation where yin.eot

165

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 166

SZIP = xin.eot ? any → out.eot ! True → SKIP

|
yin.eot ? any → out.eot ! True → SKIP

|
xin.value ? x → yin.value ? y → out.value ! (x, y) → SZIP

Figure 7.2: A simple CSP definition for the process SZIP.

Figure 7.3: A finite state machine for the process SZIP.

and xin.value are willing to communicate at exactly the same point in time - this would signify

that the stream arriving on yin has finished, but there are more values available in the stream

arriving on xin. Given the semantics of CSP’s choice operator, the decision of which branch to

follow is arbitrary. In a real world implementation such as Handel-C, however, priority in a prialt

construct is implicit based on the ordering of the alternatives. We could prioritise the eot channels

over the value channels, so that if both are willing to communicate at the same time we always go

along the eot branch.

There is however another potential problem. The processes providing the input streams may

not necessarily signal EOT immediately after sending the last item in the stream. In other words

there could be a period of time in which EOT is not signalled for a given stream, but no further

items are going to be transmitted in that stream. We should not therefore assume simply because

EOT is not signalled that we will definitely be able to consume another value from that stream.

One final issue we may wish to concern ourselves with is whether or not we are required to

166

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 167

SZIP = xin.value ? x →

yin.value ? y → out.value ! (x, y) → SZIP

|
yin.eot ? any → DONEY

|

yin.value ? y →

xin.value ? x → out.value ! (x, y) → SZIP

|
xin.eot ? any → DONEX

|
xin.eot ?any → DONEX

|
yin.eot ?any → DONEY

DONEX = yin.value ? y → DONEX

|
yin.eot ? any → out.eot ! True → SKIP

DONEY = xin.value ? x → DONEY

|
xin.eot ? any → out.eot ! True → SKIP

Figure 7.4: A more complex CSP definition for the process SZIP.

consume the unused portion of the longer stream, where the stream lengths are not equal. On

the one hand, it may be important to us that our process network as a whole ‘completes’ - that

at the end of computation no process is still running. If we do not consume the unused stream,

we will leave the producing process hanging in a live state. On the other hand, we may envisage

situations where one input stream is effectively infinite - and as such it obviously does not make

sense to attempt to consume it entirely.

So, we shall require a slightly more sophisticated process to deal with all these possible eventu-

alities. A finite state machine describing all the possible interactions is given in Figure 7.3. Note

that in the finite state machine some of the transitions are depicted using dashed lines. This is to

signify pieces of functionality which are optional, corresponding to the issue of whether or not to

consume the unused portion of the longer stream. This finite state machine can be expressed in

CSP, as illustrated in the definition in Figure 7.4.

167

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 168

7.7.2 Vectors

Considering a vector refinement of zip, we have a function vzip, of the following type:

vzipn,m :: 〈A〉n → 〈B〉m → 〈(A,B)〉n↓m

Again, we can provide an informal definition mimicking that of zip:

vzipn,m 〈x1, x2, ..., xn〉n 〈y1, y2, ..., ym〉m = 〈(x1, y1), (x2, y2), ..., (xn↓m, yn↓m)〉n↓m

As usual, a proof of the validity of this refinement would be analogous to that for the stream

refinement of zip.

Process Refinement

In process terms, we have an array of processes, each of which is responsible for taking an item from

each vector at the same index and pairing them together. In simple terms we have the following

definition:

V ZIPn,m =

n ↓ m

||
i = 1

xini ? x → yini ? y → outi ! (x, y) → SKIP

In more general terms (where the elements of the vectors are not simple items) we may require

some more sophisticated behaviour. This will be looked at in the refinement for zipwith - see

Section 7.8.

7.8 ZipWith

The function zipwith can be considered as a generalised version of zip. Whereas zip combines

two values by simply pairing them together, zipwith combines them using a user-supplied function

which is passed as a parameter. Indeed, given the pairing function, often written (,):

(,) a b = (a, b)

We can define zip as a special case of zipwith.

zip = zipwith (,)

In fact, we can also define zipwith in terms of zip, using map to post apply the function f :

zipwith f as bs = map (uncurry f) (zip as bs)

In general, the functionality of zipwith can be described informally as follows:

168

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 169

zipwith f [x1, x2, ..., xn] [y1, y2, ..., ym] = [f x1 y1, f x2 y2, ..., f xn↓m yn↓m]

It has the following type:

zipwith :: (A → B → C) → [A] → [B] → [C]

A formal definition is usually given recursively, like so:

zipwith f (a : as) (b : bs) = f a b : zipwith f as bs

zipwith f as bs = []

We can eliminate some of the pattern matching here and arrive at a single definition:

zipwith f as bs = if (null as ∨ null bs)

then []

else f (head as) (head bs) :

zipwith f (tail as) (tail bs)

We may find it helpful to introduce a couple of local definitions:

zipwith f as bs = if (null as ∨ null bs)

then []

else this : next

where this = f (head as) (head bs)

next = zipwith f (tail as) (tail bs)

As with zip, we may also give a definition for zipwith in terms of an unfold operation:

zipwith f xs ys = unfoldr g p (xs, ys)

where g (a, b) = (f (head a) (head b), (tail a, tail b))

p (a, b) = null a ∨ null b

7.8.1 Streams

In stream terms we have the function szipwith, with the following type:

szipwith :: (A → B → C) → bAc → bBc → bCc

Informally, we have:

szipwith f bx1, x2, ..., xnc by1, y2, ..., ymc
= bf x1 y1, f x2 y2, ..., f xn↓m yn↓mc

To prove that this is a valid refinement of zipwith f , we will require a diagram, similar to that

used for concatenate, to commute:

169

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 170

([A], [B]) [(A,B)]

(bAc, bBc) b(A,B)c

6
abs2S

6
absS

-uncurry (zipwith f)

-uncurry (szipwith f)

Proof that this is a valid refinement may then proceed as follows:

(uncurry (zipwith f) ◦ abs2S) (bx1, x2, ..., xnc, by1, y2, ..., ymc) {id}
= uncurry (zipwith f) ([x1, x2, ..., xn], [y1, y2, ..., ym]) {def. abs2S}
= zipwith f [x1, x2, ..., xn] [y1, y2, ..., ym] {def. uncurry}
= [(x1, y1), (x2, y2), ..., (xn↓m, yn↓m)] {def. zipwith}
= absS b(x1, y1), (x2, y2), ..., (xn↓m, yn↓m)c {def. absS}
= absS (szipwith f bx1, x2, ..., xnc by1, y2, ..., ymc) {def. szipwith}
= absS (uncurry (szipwith f) (bx1, x2, ..., xnc, by1, y2, ..., ymc)) {def. uncurry}
= (absS ◦ uncurry (szipwith f)) (bx1, x2, ..., xnc, by1, y2, ..., ymc) {def. ◦}

Process Refinement

Our stream refinement to a process would follow that for SZIP in Section 7.7.

7.8.2 Vectors

Considering a vector refinement of zipwith, we have a function vzipwith, of the following type:

vzipwithn,m :: (A → B → C) → 〈A〉n → 〈B〉m → 〈C〉n↓m

Informally, we have:

vzipwith f 〈x1, x2, ..., xn〉n 〈y1, y2, ..., ym〉m
= 〈f x1 y1, f x2 y2, ..., f xn↓m yn↓m〉n↓m

A proof here would follow the same pattern as that for szipwith above.

Process Refinement

Taking our definition for V ZIP , we could provide a simple case definition for V ZIPWITH as

follows. Here our function f is kept as a function, and we assume the elements of the input vectors

are simple items.

V ZIPWITHn,m(f) =

n ↓ m

||
i = 1

xini ? x → yini ? y → outi ! (f x y) → SKIP

170

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 171

In more general terms, as with other higher order functions we have seen in the past, it may

be necessary to devolve some of the communication into the refinement of f , that is to say:

V ZIPWITHn,m(F) =

n ↓ m

||
i = 1

F [xini/xin, yini/yin, outi/out]

This would, of course, allow us to refine a simple function f that operated on items into the

following process:

F = xin ? x → yin ? y → out ! (f x y) → SKIP

As an example, to implement the functionality of zip we could provide the following process F :

F = xin ? x → yin ? y → out ! (x, y) → SKIP

The process V ZIPWITH is illustrated in Figure 7.5.

x1 x2 . . . xk−1 xk

? ? ? ?

y1 y2 . . . yk−1 yk

? ? ? ?

F1 F2 Fk−1 Fk

? ? ? ?

. . .

f x1 y1 f x2 y2
. . .

f xk−1 yk−1 f xk yk

Where k = n ↓ m (the length of the shorter vector).

Figure 7.5: The process V ZIPWITH.

7.9 Head and Last

The functions head and last retrieve the first and final elements of a list respectively. Informally

speaking, we have:

head [x1, x2, ..., xn] = x1

last [x1, x2, ..., xn] = xn

Both have the same type, taking in a list of items, and returning a single value:

head :: [A] → A

tail :: [A] → A

Formal definitions for these functions usually rely heavily on pattern matching, for example:

171

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 172

head (x : xs) = x

last [x] = x

last (x : xs) = last xs

Both functions are undefined for the empty list. These pointwise definitions, relying on pattern

matching, are not necessarily very convenient for use in transformations and proofs. Let us consider

point-free alternatives. Given appropriate binary operators, it should be possible to express both

head and last in terms of a fold operation. It turns out these operators are very simple indeed,

for computing head, we just need to ensure we always take the left operand at every point, and

similarly for last we always take the right operand. Thus we have two simple binary operators (←)

and (→), pronounced left and right:

a ← b = a

a → b = b

We then have:

head = fold (←)

last = fold (→)

7.9.1 Streams

In stream terms, we will use definitions analogous to the point-free ones given above for head and

tail:

shead = sfold (←)

slast = sfold (→)

These have the following types respectively:

shead :: bAc → A

slast :: bAc → A

Proofs that these are valid refinements will be more or less identical for both functions, so let

us just take the example of shead. For this to be considered a valid refinement of head, we require

the following diagram to commute:

[A] A

bAc A

6
absS

6
id

-head

-shead

172

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 173

Given the proof that sfold is a valid refinement of fold presented in Section 5.3.1, this proof

should be fairly trivial:

(head ◦ absS) bx1, x2, ..., xnc {id}
(fold (←) ◦ absS) bx1, x2, ..., xnc {def.head}
(id ◦ sfold (←)) [x1, x2, ..., xn] {ref. sfold}
(id ◦ shead) [x1, x2, ..., xn] {def. shead}

7.9.2 Vectors

In vector terms, we have the functions vhead and vlast:

vheadn = vfoldn (←)

vlastn = vfoldn (→)

These have the following types respectively:

vheadn :: 〈A〉n → A

vlastn :: 〈A〉n → A

As with the stream case, we shall just provide a proof for the validity of vhead as a refinement

for head, given that the equivalent proof for last and vlast would be almost identical. As usual,

we require the following diagram to commute:

[A] A

〈A〉n A

6
absV

6
id

-head

-vheadn

Again, given the proof that vfold is a valid refinement of fold presented in Section 5.3.2, this

proof should be fairly trivial:

(head ◦ absV) 〈x1, x2, ..., xn〉n {id}
(fold (←) ◦ absV) 〈x1, x2, ..., xn〉n {def.head}
(id ◦ vfoldn (←)) [x1, x2, ..., xn] {ref. vfold}
(id ◦ vheadn) [x1, x2, ..., xn] {def. vhead}

7.10 Take and Drop

The functions take and drop can be considered generalisations of head and tail. To illustrate this,

we have the following relationships:

take 1 xs = [head xs]

drop 1 xs = tail xs

173

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 174

Both functions take in an integer and a list and return a list. Therefore their type signatures

are the same:

take :: Int → [A] → [A]

drop :: Int → [A] → [A]

Their functionality can be defined informally as follows:

take k [x1, x2, ..., xn] = [x1, x2, ..., xk↓n]

drop k [x1, x2, ..., xn] = if k ≥ n

then [xk+1, xk+2, ..., xn]

else []

More formal definitions are normally given recursively, for example:

take 0 xs = []

take n [] = []

take n (x : xs) = x : take (n− 1) xs

However, we may find a definition in terms of a list comprehension more convenient at times:

take k xs = [x | (i, x) ← zip [1..] xs, i ≤ k]

drop k xs = [x | (i, x) ← zip [1..] xs, i > k]

Given the close relationship between list comprehensions and the higher order functions map

and filter, these definitions are of course equivalent to the following point-free definitions:

take k = map snd ◦ filter ((≤ k) ◦ fst) ◦ zip [1..]

drop k = map snd ◦ filter ((> k) ◦ fst) ◦ zip [1..]

For take, we can also provide a neat definition in terms of unfoldr:

take n xs = unfoldr f p (xs, n)

where f (a : as, m + 1) = (a, (as,m))

p (a,m) = null a ∨m ≤ 0

However, for drop this is not quite so straightforward.

We may find stream and vector refinements of these functions useful.

7.10.1 Streams

Let us first consider a refinement of take in stream terms. The function stake will have type:

stake :: Int → bAc → bAc

We can of course supply an informal definition for its functionality:

stake k bx1, x2, ..., xnc = bx1, x2, ..., xk↓nc

174

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 175

Given stream refinements for map, filter and zip, one possible definition for stake, analogous

to the point-free definition of take given above, could be as follows:

stake k = smap snd ◦ sfilter ((≤ k) ◦ fst) ◦ szip b1..c

As usual, we will require the now familiar diagram to commute if any definition of stake is to

be proven a valid refinement:

[A] [A]

bAc bAc

6
absS

6
absS

-take k

-stake k

Let us first consider a proof in terms of our informal definition of stake:

(take k ◦ absS) bx1, x2, ..., xnc {id}
= take k [x1, x2, ..., xn] {def. absS}
= [x1, x2, ..., xk↓n] {def. take}
= absS bx1, x2, ..., xk↓nc {def. absS}
= absS (stake k bx1, x2, ..., xnc) {def. stake}
= (absS ◦ stake k) bx1, x2, ..., xnc {def.◦}

We may also provide a proof for our more formal, point-free definition:

(take k ◦ absS) bx1, x2, ..., xnc {id}
= take k [x1, x2, ..., xn] {def. absS}
= (map snd ◦ filter ((≤ k) ◦ fst) ◦ zip [1..]) [x1, x2, ..., xn] {def. take k}
= (map snd ◦ filter ((≤ k) ◦ fst)) [(1, x1), (2, x2), ..., (n, xn)] {def. zip}
= map snd [(1, x1), (2, x2), ..., (k ↓ n, xk↓n)] {filter}
= [x1, x2, ..., xk↓n] {map}
= absS bx1, x2, ..., xk↓nc {def.absS}
= absS (smap snd b(1, x1), (2, x2), ..., (k ↓ n, xk↓n)c) {smap}
= absS ((smap snd ◦ sfilter ((≤ k) ◦ fst))) b(1, x1), (2, x2), ..., (n, xn)c) {sfilter}
= absS ((smap snd ◦ sfilter ((≤ k) ◦ fst)) ◦ szip b1..c) bx1, x2, ..., xnc) {szip}
= absS (stake k bx1, x2, ..., xnc) {def.stake}
= (absS ◦ stake k) bx1, x2, ..., xnc {def.◦}

A similar proof could be provided for the refinement of drop in stream terms, given a definition

closely following that of stake:

sdrop k = smap snd ◦ sfilter ((> k) ◦ fst) ◦ szip b1..c

175

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 176

Clearly the type would be the same as that for stake:

sdrop :: Int → bAc → bAc

7.10.2 Vectors

In vector terms, we have the functions vtake and vdrop. Here we need to take special consideration

of the size of the resulting vectors. Clearly the parameter k affects this, and as such, this value

must form part of the type.

vtaken k :: 〈A〉n → 〈A〉k↓n
vdropn k :: 〈A〉n → 〈A〉(n−k)↑0

Their functionality can be defined informally as follows, assuming k is non-negative:

vtaken k 〈x1, x2, ..., xn〉n = 〈x1, x2, ..., xk↓n〉k↓n
vdropn k 〈x1, x2, ..., xn〉n = if k < n then 〈xk+1, xk+2, ..., xn〉n−k else 〈〉0

Given the issues with filter in vector terms, we can not use an equivalent of the point-free

definitions used for the stream case above. Furthermore, recursive definitions do not suit the

vector setting, due to the fixed size nature of the structures involved. Let us assume therefore

these are ‘primitives‘. We can check the validity of these refinements based on these informal

definitions in the usual way. First the diagram which we require to commute, in this case for

vtake:

[A] [A]

〈A〉n 〈A〉n↓k

6
absV

6
absV

-take k

-vtaken k

The proof may then proceed as follows

(take k ◦ absV) 〈x1, x2, ..., xn〉n {id}
= take k [x1, x2, ..., xn] {def. absV }
= [x1, x2, ..., xk↓n] {def. take}
= absV 〈x1, x2, ..., xk↓n〉k↓n {def. absV }
= absV (vtaken k 〈x1, x2, ..., xn〉n) {def. vtaken}
= (absV ◦ vtaken k) 〈x1, x2, ..., xn〉n {def.◦}

A similar proof could, of course, be presented for vdrop.

176

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 177

7.11 Init and Tail

The functions init and tail retrieve the first and final segments of a list respectively. Their types

are therefore as follows:

init :: [A] → [A]

tail :: [A] → [A]

Informally, we have:

init [x1, x2, ..., xn] = [x1, x2, ..., xn−1]

tail [x1, x2, ..., xn] = [x2, x3, ..., xn]

Neither function is defined in the case of the empty list. These are often seen as companions

to the functions head and tail, given the following relationships (assuming xs is a non-empty list):

[head xs] ++ tail xs = xs

init xs ++ [last xs] = xs

They also share a relationship with take and drop, defined as follows:

init [x1, x2, ..., xn] = take (n− 1) [x1, x2, ..., xn]

tail [x1, x2, ..., xn] = drop 1 [x1, x2, ..., xn]

Their formal definitions are usually given via pattern matching and (in the case of init) recur-

sively, as follows:

tail (x : xs) = xs

init [x] = []

init (x : xs) = x : init xs

Given the relationship with take and drop we can also define them as follows:

init xs = take (length xs − 1) xs

tail xs = drop 1 xs

7.11.1 Streams

In stream terms, we have:

sinit bx1, x2, ..., xnc = bx1, x2, ..., xn−1c
stail bx1, x2, ..., xnc = bx2, x3, ..., xnc

These functions have the following type:

sinit :: bAc → bAc
stail :: bAc → bAc

We can give formal definitions for these functions as follows:

177

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 178

sinit s = stake (slength s − 1) s

stail = sdrop 1

Given that stake and sdrop have already been proven to be valid refinements for take and drop

respectively, and that sinit and stail are implemented in terms of stake and sdrop, it is a trivial

task to prove the validity of these refinements.

Proof that any definition of sinit is a valid refinement of init will require that the following

diagram commutes:

[A] [A]

bAc bAc

6
absS

6
absS

-init

-sinit

Let us consider a proof for our informal definition of sinit.

(init ◦ absS) bx1, x2, ..., xnc {id}
= init [x1, x2, ..., xn] {def. absS}
= [x1, x2, ..., xn−1] {def. init}
= absS bx1, x2, ..., xn−1c {def. absS}
= absS (sinit bx1, x2, ..., xnc) {def. sinit}
= (absS ◦ sinit) bx1, x2, ..., xnc {def.◦}

A proof for our formal definition of stail, based on sdrop, may proceed as follows:

(tail ◦ absS) bx1, x2, ..., xnc {id}
= (drop 1 ◦ absS) bx1, x2, ..., xnc {def. tail}
= (absS ◦ sdrop 1) bx1, x2, ..., xnc {ref. sdrop}
= (absS ◦ stail) bx1, x2, ..., xnc {def. stail}

A proof for the formal definition of sinit is a little trickier, given the pointwise style of our

definition. We have:

178

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 179

(init ◦ absS) bx1, x2, ..., xnc {id}
= ((λ s • take (length s− 1) s) ◦ absS) bx1, x2, ..., xnc {def. init}
= ((λ s • take (((−1) ◦ length) s) s) ◦ absS) bx1, x2, ..., xnc {def. ◦}
= (λ s • (take (((−1) ◦ length ◦ absS) s) ◦ absS) s) bx1, x2, ..., xnc {see below}
= (λ s • (take (f s) ◦ absS) s) bx1, x2, ..., xnc

where f = (−1) ◦ length ◦ absS {where}
= g bx1, x2, ..., xnc

where f = (−1) ◦ length ◦ absS

g s = (take (f s) ◦ absS) s
{where}

= g bx1, x2, ..., xnc
where f = (−1) ◦ id ◦ slength

g s = (take (f s) ◦ absS) s
{ref. slength}

= g bx1, x2, ..., xnc
where f = (−1) ◦ id ◦ slength

g s = (absS ◦ stake (f s)) s
{ref. stake}

= (λ s • (absS ◦ stake (f s)) s) bx1, x2, ..., xnc
where f = (−1) ◦ id ◦ slength {where}

= (λ s • (absS ◦ stake (((−1) ◦ id ◦ slength) s)) s) bx1, x2, ..., xnc {where}
= (λ s • (absS ◦ stake (((−1) ◦ slength) s)) s) bx1, x2, ..., xnc {def. id}
= (λ s • (absS ◦ stake (slength s− 1)) s) bx1, x2, ..., xnc {def. ◦}
= (λ s • (absS ◦ sinit s)) bx1, x2, ..., xnc {def. sinit}
= (absS ◦ sinit) bx1, x2, ..., xnc {def. λ}

This proof hinges on several points. The already proven refinements of length and take into

slength and stake respectively are of course essential.

Additionally, we have a transformation rule useful for dealing with pointwise definitions. Con-

sider a function k applied to an argument x which computes its result based on passing x first to

two functions g and h, and then passing the results of these to f . We have

k x = f (g x) (h x)

Or using Lambda notation we have:

k = (λx • f (g x) (h x))

Our function k is then composed with another function e.

(λx • f (g x) (h x)) ◦ e

179

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 180

In such a definition, we may find it convenient to ”distribute” e over the sub-expressions (g x)

and (h x). In effect this is the factorisation rule applied to the functional composition operator.

Thus we have the following equivalence:

(λx • f (g x) (h x)) ◦ e = (λx • f ((g ◦ e) x) ((h ◦ e) x))

In fact we can generalise this up to any number of sub-expressions:

(λx • f (g1 x) (g2 x)...(gn x)) ◦ e = (λx • f ((g1 ◦ e) x) ((g2 ◦ e) x) ... ((gn ◦ e) x))

7.11.2 Vectors

In vector terms, we have:

vinitn 〈x1, x2, ..., xn〉n = 〈x1, x2, ..., xn−1〉n−1

vtailn 〈x1, x2, ..., xn〉n = 〈x2, x3, ..., xn〉n−1

With the following type signatures:

vinitn :: 〈A〉n → 〈A〉n−1

vtailn :: 〈A〉n → 〈A〉n−1

Formal definitions can follow those for init and tail given in terms of take and drop.

vinitn xs = vtaken (vlength xs− 1)

vtailn = vdropn 1

Indeed, given that we are working in the vector setting, and as such our structures are of fixed

length, we can in fact simplify our definition for vinitn somewhat, to arrive at a point-free version:

vinitn = vtaken (n− 1)

As with the stream case, given that vtake and vdrop have already been proven to be valid

refinements for take and drop respectively, and that vinit and vtail are implemented in terms of

vtake and vdrop, it is a trivial task to prove the validity of these refinements. Taking the example

of vtail, we require the familiar diagram to commute:

[A] [A]

〈A〉n 〈A〉n−1

6
absV

6
absV

-tail

-vtailn

Proof of this is again straightforward:

(tail ◦ absV) 〈x1, x2, ..., xn〉n {id}
= (drop 1 ◦ absV) 〈x1, x2, ..., xn〉n {def. tail}
= (absV ◦ vdropn 1) 〈x1, x2, ..., xn〉n {ref. vdrop}
= (absV ◦ vtailn) 〈x1, x2, ..., xn〉n {def. vtail}

180

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 181

7.12 Inits and Tails

Two particularly useful functions are inits and tails. The first, inits, produces all of the initial

segments of a given list in ascending order of size. We have:

inits :: [A] → [[A]]

inits [x1, x2, . . . , xn] = [[], [x1], . . . , [x1, x2, . . . , xn−1], [x1, x2, . . . , xn]]

As a natural companion to this, tails produces all of the final segments of a list, in descending

order of size:

tails :: [A] → [[A]]

tails [x1, x2, . . . , xn] = [[x1, x2, . . . , xn], [x2, x3, . . . , xn], . . . , [xn], []]

More formal definitions of inits and tails are usually given recursively, for example, inits can

be defined as follows:

inits[] = [[]]

inits(x : xs) = [[]] ++ map (x :) (inits xs)

Correspondingly, a possible recursive definition for tails is as follows:

tails[] = [[]]

tails(x : xs) = (x : xs) : tails xs

We may find it useful to consider also definitions for inits and tails in terms of higher order

functions. One possible method is in terms of a map and a fold, as follows:

inits = fold (⊗i) ◦ map (λ x . [[], [x]])

where as⊗i bs = as ++ map (last as ++) (tail bs)

tails = fold (⊗t) ◦ map (λ x . [[x], []])

where as⊗t bs = map (++ head bs) (init as) ++ bs

These definitions clearly identify the homomorphic nature of inits and tails. Another possible

definition through higher order functions is presented to us by unfoldr and unfoldl.

tails xss = unfoldr (λxs • (xs, tail xs)) null xss ++ [[]]

inits xss = [[]] ++ unfoldl (λxs • (init xs, xs)) null xss

Two further variations on these functions may be seen, inits+ and tails+. These operate in an

almost identical fashion to inits and tails, except that they don’t include the empty list in their

output. I.e., for inits+, we have:

inits+ :: [A] → [[A]]

inits+ [x1, x2, . . . , xn] = [[x1], . . . , [x1, x2, . . . , xn−1], [x1, x2, . . . , xn]]

and for tails+:

181

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 182

tails+ :: [A] → [[A]]

tails+ [x1, x2, . . . , xn] = [[x1, x2, . . . , xn], [x2, x3, . . . , xn], . . . , [xn]]

These variants are particularly well suited to definition in terms of unfoldl and unfoldr:

tails+ = unfoldr (λxs • (xs, tail xs)) null

inits+ = unfoldl (λxs • (init xs, xs)) null

A small amount of swapping around gives us two further variants:

fins+ = unfoldl (λxs • (tail xs, xs)) null

begs+ = unfoldr (λxs • (xs, init xs)) null

Here fins+ is analogous to tails+ except that the lists are returned in ascending, rather than

descending, order of length. Similarly begs+ is analogous to inits+ except that the lists are returned

in descending order of length. We can of course translate between tails+ and fins+ (as well as

tails+ and fins+) simply by reversing the resulting list. We have:

fins+ = reverse ◦ tails+

begs+ = reverse ◦ inits+

7.12.1 Stream to Stream of Streams

The first possible refinement we shall consider refines the input list to a stream, and the output list

of lists to a stream of streams. This will provide us with the least scope for parallelism, but also

the least obstacles when we come to consider implementation. Considering tails, we shall name a

refinement in these terms ssstails. Its definition is analogous to that of tails:

ssstails bx1, x2, . . . , xnc = bbx1, x2, . . . , xnc, bx2, x3, . . . , xnc, . . . , bxnc, bcc

The type of this function is as follows:

ssstails :: bAc → bbAcc

As ever, to prove this is a valid refinement of tails, we shall require that the following diagram

commutes:

[A] [[A]]

bAc bbAcc

6
absS

6
absSS

-tails

-ssstails

182

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 183

We can prove this as follows:

(tails ◦ absS) bx1, x2, ..., xnc {id}
= tails [x1, x2, ..., xn] {def. absS}
= [[x1, x2, . . . , xn], [x2, x3, . . . , xn], . . . , [xn], []] {def. tails}
= absSS bbx1, x2, . . . , xnc, bx2, x3, . . . , xnc, . . . , bxnc, bcc {def. absSS}
= (absSS ◦ ssstails) bx1, x2, . . . , xnc {def. ssstails}

Considering inits in this setting, in short we have the following definitions:

sssinits :: bAc → bbAcc
sssinits+ :: bAc → bbAcc
sssinits bx1, x2, . . . , xnc = bbc, bx1c, . . . , bx1, x2, . . . , xn−1c, bx1, x2, . . . , xncc
sssinits+ bx1, x2, . . . , xnc = bbx1c, . . . , bx1, x2, . . . , xn−1c, bx1, x2, . . . , xncc

Process Refinement

A process to implement the functionality of either tails or init in this setting will require buffering.

The process will only receive each value from the input stream once, however, it will be required

to output some of these values many times, at different positions. The ordering is, of course, all

important with these functions. Let us consider therefore a process refinement for sssinits. We

have a broad outline of the required functionality in CSP below:

SSSINITS = buff := []; Prd(buff)[out.value/out];

µX•
in.eot ? any → out.eot ! True → SKIP

|
in.value ? x → buff := buff ++ [x]; Prd(buff)[out.value/out];X

Similarly the process SSSINITS+ could proceed along the same lines as above, but without

the initial Prd for the empty buffer. For processes implementing the functionality of tails in this

setting the definition is not quite as fluid. With tails, unlike inits, the first component list is the

entire input list. We will therefore have had to consume the entire input stream before this can be

output.

7.12.2 Stream to Vector of Streams

An improvement on the previous alternative in terms of scope for parallelism. This refinement

allows the sub-lists in the output to be produced independently in parallel as a vector of streams.

However, this approach has one drawback in that we will need to know the size of the input stream

before we can know the size of the output vector. A refinement of tails in these terms shall be

called svstails.

183

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 184

svstailsn bx1, x2, . . . , xnc = 〈bx1, x2, . . . , xnc, bx2, x3, . . . , xnc, . . . , bxnc, bc〉n+1

The type of this function as as follows:

svstailsn :: bAc → 〈bAc〉n+1

Similarly, for our version which does not include the empty list in the output, we have:

svstails+
n bx1, x2, . . . , xnc = 〈bx1, x2, . . . , xnc, bx2, x3, . . . , xnc, . . . , bxnc〉n

This has the following type:

svstails+
n :: bAc → 〈bAc〉n

To prove svstailsn is a valid refinement of tails, we shall require that the following diagram

commutes:

[A] [[A]]

bAc 〈bAc〉n

6
absS

6
absV S

-tails

-svstailsn

We can prove this as follows:

(tails ◦ absS) bx1, x2, ..., xnc {id}
= tails [x1, x2, ..., xn] {def. absS}
= [[x1, x2, . . . , xn], [x2, x3, . . . , xn], . . . , [xn], []] {def. tails}
= absV S 〈bx1, x2, . . . , xnc, bx2, x3, . . . , xnc, . . . , bxnc, bc〉n+1 {def. absV S}
= (absV S ◦ svstailsn) 〈x1, x2, . . . , xn〉n+1 {def. svstailsn}

A similar proof could be provided for svstails+
n .

Considering inits in this setting, in short we have the following definitions:

svsinitsn :: bAc → 〈bAc〉n+1

svsinits+
n :: bAc → 〈bAc〉n

svsinitsn bx1, x2, . . . , xnc = 〈bc, bx1c, . . . , bx1, x2, . . . , xn−1c, bx1, x2, . . . , xnc〉n+1

svsinits+
n bx1, x2, . . . , xnc = 〈bx1c, . . . , bx1, x2, . . . , xn−1c, bx1, x2, . . . , xnc〉n

As already noted, inits and tails can be expressed in terms of the more general unfold scheme.

This expression works particularly well for the variants which do not contain the empty list in their

output - inits+ and tails+. Correspondingly in our vector of streams output refinement, we can

appeal to vunfoldr and vunfoldl respectively for definitions:

184

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 185

svstails+ = vunfoldr tl snull

where tl xs = (xs, stail xs)

svsinits+ = vunfoldl ini snull

where ini xs = (sinit xs, xs)

Process Refinement

Our process refinement shall follow the pattern of the unfold functions. In our data refinement

stage we have shown how we can express our derivations of inits and tails in this particular setting

in terms of a vunfoldl and a vunfoldr respectively. Our main task is then to concentrate on the

refinement of the characteristic function. In the case of our refinement of tails, we have the function

tl:

tl xs = (xs, stail xs)

This has the following type:

tl :: bAc → (bAc, bAc)

In process terms we have a component which takes one input stream and produces two output

streams. One of the two output streams should contain all of the values received from the input

stream. This stream will form one of the components of our overall output, and we shall name the

corresponding conduit outd - out ‘down’. The other output stream should contain the tail of the

input - all but the first item. This stream will form the input to the next component process, and

we shall name the corresponding conduit outr - out ‘right’. As such we have the following alphabet

for this process:

αTL = {in :: bAc, outd :: bAc, outr :: bAc}

This component process is illustrated in Figure 7.6.

TL
[x1, x2, ..., xn]

-
[x2, x3, ..., xn]

-

?

[x1, x2, ..., xn]

Figure 7.6: A single component of the process SVSTAILS.

As for a definition of this process, we are effectively echoing each item from the input stream to

each of the two output streams at each step. The exception to this is the very first item received,

which will be echoed to outd but not to outr. Such a process can be defined in CSP as follows:

185

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 186

TL = in.value ? x → outd.value ! x →

µX •

in.eot ? any → outd.eot ! True → outr.eot ! True → SKIP

|
in.value ? x → outd.value ! x → outr.value ! x → X

We can construct an implementation of SV STAILS by composing n of these processes together

in parallel. We have the following alphabet:

αSV STAILSn = {in :: bAc, out :: 〈bAc〉n+1}

Those components in the ‘middle’ of the composition will follow a standard pattern of commu-

nication, taking their input from the previous process, echoing the entire stream to their output

conduit, and then passing the tail onto the next process. We shall require slightly different behav-

iour for the initial and final components. The initial component will have to deal with the input

stream to the process as a whole. The final process will be responsible for producing two streams

rather than our usual one in the output vector of streams. We shall therefore have a total of n

component processes, producing (n + 1) output streams. We shall also require a set of (n − 1)

intermediate stream conduits to communicate from each component process to its successor. These

intermediate conduits will be named [mid1,mid2, ..., midn−1]. The definition is given below:

SV STAILSn = TLinitial ||

n− 1

||
i = 2

TL[midi−1/in, outi/outd,midi/outr]

 || TLfinal

TLinitial = TL[in/in, out1/outd,mid1/outr]

TLfinal = TL[midn−1/in, outn/outd, outn+1/outr]

An illustration of the process in question is given in Figure 7.7.

? ? ? ?

TLinitial TL2 TLn TLfinal
[x1, x2, ..., xn]-

[x2, x3, ..., xn]

-

[x3, x4, ..., xn]

-

[xn−1, xn]

-

[xn]

-

?

. . .

[x1, x2, ..., xn] [x2, x3, ..., xn]
. . .

[xn−1, xn] [xn] []

Figure 7.7: The process SV STAILS.

The inclusion of the empty list (or stream) in the output is, as already noted, not always desir-

able - this is likely to result in wasted processing resources. So, let us consider here a process re-

finement for the function svstails+
n . We shall see here that the process definition for SV STAILS+

follows very closely to that for SV STAILS. In effect we simply need to employ one less instance

186

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 187

of the TL process, and slightly change the channel assignments of the final component. This is

reflected first of all in the alphabet of the process (note one less output stream):

αSV STAILS+
n = {in :: bAc, out :: 〈bAc〉n}

We shall require a total of (n− 1) component processes, and (n− 2) intermediate processes to

communicate between them. As the final process produces two output streams, we will have a total

of n streams in our output vector. The definition is given below, with the differences highlighted

in bold:

SV STAILS+
n = TLinitial ||

n− 2

||
i = 2

TL[midi−1/in, outi/outd, midi/outr]

 || TLfinal

TLinitial = TL[in/in, out1/outd,mid1/outr]

TLfinal = TL[midn−2/in, outn−1/outd, outn/outr]

This is depicted in Figure 7.8.

? ? ? ?

TLinitial TL2 TLn−1 TLfinal
[x1, x2, ..., xn]-

[x2, x3, ..., xn]

-

[x3, x4, ..., xn]

-

[xn−2, xn−1, xn]

-

[xn−1, xn]

-

?

. . .

[x1, x2, ..., xn] [x2, x3, ..., xn]
. . .

[xn−2, xn−1, xn] [xn−1, xn] [xn]

Figure 7.8: The process SV STAILS+.

Considering now a process implementing inits now, we shall see we can again rely on the unfold

pattern and build such a process by a composition of simple components. This time our component

process will be a refinement of the function ini, given below:

ini xs = (sinit xs, xs)

This has the following type:

ini :: bAc → (bAc, bAc)

The behaviour of the component process INI is somewhat analogous to that for TL. Note here

that the flow of data is in the opposite direction. This is a consequence of the head recursive nature

of inits as opposed to the tail recursive nature of tails. Indeed, we have implemented inits in terms

of unfoldl, but tails in terms of unfoldr. The only other major difference is, of course, that the

incomplete stream output gives the init of the input stream rather than the tail. This process will

deal with three conduits. The first, in, receives the input stream. The second, outd (out ‘down’),

187

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 188

echoes the input stream verbatim. The third, outl (out ‘left’) is responsible for producing the init

(all but the last item) of the input stream. As such the process alphabet can be defined as follows:

αINI = {in :: bAc, outd :: bAc, outl :: bAc}

Such a component is illustrated in Figure 7.9.

INI
[x1, x2, ..., xn−1]

¾
[x1, x2, ..., xn]
¾

?

[x1, x2, ..., xn]

Figure 7.9: A single component of the process SVSINITS.

This component process can be implemented by means of a single item buffer. Each time an

item is received, it is immediately echoed on one output stream (outd) and is also put in the

buffer. When a subsequent item is received, the buffered item can be output on outl, and the

newly received item will replace the previous item in the buffer. When EOT is signalled for the

input stream, the buffered item is then discarded. In this way all but the last item will be output

on outl, whereas the entirety of the input stream will be echoed on outd.

INI = in.value ? b → outd.value ! b →

µX •

in.eot ? any → outd.eot ! True → outl.eot ! True → SKIP

|
in.value ? x → outd.value ! x → outl.value ! b; b := x; → X

As was the case with tails, our process implementing the functionality of inits can then be

constructed by composing together a number of these components. As before we shall see deviation

from the norm for the final and initial processes in the network. This can be specified in CSP as

follows:

SV SINITSn = INIfinal ||

n− 1

||
i = 2

INI[midi/in, outi+1/outd,midi−1/outl]

 || INIinitial

INIinitial = INI[in/in, outn+1/outd,midn−1/outl]

INIfinal = INI[mid1/in, out2/outd, out1/outl]

The resulting network is depicted in Figure 7.10.

Handel-C Implementation

We can supply a Handel-C implementation which follows very closely the behaviour given in our

CSP definition. First, let us look at our component process, TL. The Handel-C implementation is

188

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 189

? ? ? ?

INIfinal INI2 INIn−1 INIinitial

?

[x1]

¾

[x1, x2]

¾

[x1, x2, ..., xn−2]

¾

[x1, x2, ..., xn−1]

¾ [x1, x2, ..., xn]¾. . .

[] [x1] [x1, x2]
. . .

[x1, x2, ..., xn−1] [x1, x2, ..., xn]

Figure 7.10: The process SV SINITS.

macro proc TL (in, outd, outr)
{

messagetype (in) x;
Bool eot;
eot = False;
in.value ? x;
outd.value ! x;
while (!eot)
{

prialt
{
case in.eot ? eot;

outd.eot ! True;
outr.eot ! True;
break;

case in.value ? x;
outd.value ! x;
outr.value ! x;
break;

}
}

}

Figure 7.11: The Handel-C definition of the process TL.

given in Figure 7.11. We can then construct our definition for SV STAILS by composing together

a number of instances of TL, in a manner analogous to the CSP definition. This is shown in

Figure 7.12.

7.12.3 Stream to Stream of Vectors

This alternative is not workable as we have stated that the stream of vectors requires each sub-list

to be of equal length. The output of both inits and tails by their very nature will contain sub-lists

of differing lengths. This can be illustrated by an attempt to construct the type definition of this

function:

ssvtailsn :: bAc → b〈A〉??c

The size of the inner vector here is variable, between 0 and the size of the input stream. This

189

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 190

macro proc SVSTAILS (n, in, out)
{

conduittype (in) mid[n];
par (i=0;i<(n+1);i++)
{

ifselect (i==0)
TL (in,out[0],mid[0]);

else ifselect (i<n)
TL (mid[i-1],out[i],mid[i]);

else ifselect (i==n)
TL (mid[n-1],out[n-1],out[n]);

}
}

Figure 7.12: The Handel-C definition of the process SVSTAILS.

is not, therefore, a well typed function.

7.12.4 Stream to Vector of Vectors

Again, within a vector of vectors, each sub-vector must be of equal length, so this refinement is

not possible, given the nature of the output of inits and tails. In any case, for efficiency reasons,

this is probably not a very useful refinement anyway. If the input is refined to a stream, we shall

require linear time to receive it. Thus there is no great benefit in being able to produce the entire

output structure in constant time. As such, we shall not consider this alternative.

7.12.5 Vector to Stream of Streams

The usefulness of receiving the input as a vector (and therefore in constant time) is lost given that

the output will require quadratic time to produce. Thus we shall consider this alternative only

briefly here. Our informal definition for vsstails follows the usual pattern:

vsstailsn 〈x1, x2, . . . , xn〉n = bbx1, x2, . . . , xnc, bx2, x3, . . . , xnc, . . . , bxnc, bcc

This has the following type:

vsstailsn :: 〈A〉n → bbAcc

7.12.6 Vector to Vector of Streams

We might consider this as an alternative to the stream to vector of streams refinement, given that,

as mentioned, we will need to know the size of the input anyway. A refinement of tails in these

terms shall be called vvstails.

vvstailsn 〈x1, x2, . . . , xn〉n = 〈bx1, x2, . . . , xnc, bx2, x3, . . . , xnc, . . . , bxnc, bc〉n+1

This has the following type:

190

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 191

vvstailsn :: 〈A〉n → 〈bAc〉n+1

To prove this is a valid refinement of tails, we shall require that the following diagram commutes:

[A] [[A]]

〈A〉n 〈bAc〉n

6
absV

6
absV S

-tails

-vvstailsn

We can prove this as follows:

(tails ◦ absV) 〈x1, x2, ..., xn〉n {id}
= tails [x1, x2, ..., xn] {def. absV }
= [[x1, x2, . . . , xn], [x2, x3, . . . , xn], . . . , [xn], []] {def. tails}
= absV S 〈bx1, x2, . . . , xnc, bx2, x3, . . . , xnc, . . . , bxnc, bc〉n+1 {def. absV S}
= (absV S ◦ svstailsn) 〈x1, x2, . . . , xn〉n+1 {def. svstailsn}

7.12.7 Vector to Stream of Vectors

As before, given that the sub-lists of the output are of differing sizes, we can not employ the stream

of vectors to produce the result.

7.12.8 Vector to Vector of Vectors

This refinement should, in theory, be capable of performing the entire operation in constant time.

However in practice, its usefulness may be questionable given that the output will be in such an

irregular form - a vector containing vectors all of differing sizes.

7.13 And, Or, Any, All

We shall occasionally find useful a handful of simple logical operations on lists, which can be defined

in terms of our higher order functions map and fold. First we have two functions named and and

or which can be seen as generalisations of the binary operators (∧) and (∨). These functions simply

fold over a list of booleans with the appropriate operator and base value. As such for a non-empty

list, and returns True if and only if all items in the list are True, whereas or returns True if one or

more items in the list is True.

and :: [Bool] → Bool

or :: [Bool] → Bool

and = foldr (∧) True

or = foldr (∨) False

191

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 192

Two further simple functions related to the above two are all and any. Each takes in a list and

a predicate, and then returns a boolean dictating whether or not that predicate is true for all, or

any, items of that list respectively. We have:

any :: (A → Bool) → [A] → Bool

all :: (A → Bool) → [A] → Bool

any p = or ◦map p

all p = and ◦map p

7.13.1 Streams

In stream terms we have the following refinements, firstly for and and or:

sand :: bBoolc → Bool

sor :: bBoolc → Bool

sand = sfoldr (∧) True

sor = sfoldr (∨) False

Secondly for any and all, we have:

sany :: (A → Bool) → bAc → Bool

sall :: (A → Bool) → bAc → Bool

sany p = sor ◦ smap p

sall p = sand ◦ smap p

Proofs that these are valid refinements would be trivial given that we have already proved the

refinements of map and foldr, so we shall not include them here.

7.13.2 Vectors

In vector terms we have the following refinements, firstly for and and or:

vandn :: 〈Bool〉n → Bool

vorn :: 〈Bool〉n → Bool

vandn = vfoldrn (∧) True

vorn = vfoldrn (∨) False

Secondly for any and all, we have:

vanyn :: (A → Bool) → 〈A〉n → Bool

valln :: (A → Bool) → 〈A〉n → Bool

vanyn p = vorn ◦ vmapn p

valln p = vandn ◦ vmapn p

As with the stream case, proofs that these are valid refinements would be trivial given that we

have already proved the refinements of map and foldr, so again we shall not include them here.

192

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 193

7.14 Cartesian Product

Many algorithms require the calculation of the Cartesian product of two sets or lists. Thus we will

find this useful as a generic list processing function. Informally, we have:

cp [x1, x2, ..., xn] [y1, y2, ..., ym]

= [(x1, y1), (x1, y2), ..., (x1, ym), (x2, y1), (x2, y2), ..., (x2, ym), ..., (xn, y1), (xn, y2), ..., (xn, ym)]

In list terms we have the following type:

cp :: [A] → [B] → [(A,B)]

This function is typically defined as a list comprehension, and this is perhaps the most succinct

manner in which to present a definition:

cp xs ys = [(x, y) | x ← xs, y ← ys]

An alternative is the function dcp, or distributed Cartesian product, which returns the resulting

pairs as a list of lists rather than all in a single list. This can be defined as follows:

dcp xs ys = [[(x, y) | y ← ys] | x ← xs]

This has the following type:

dcp :: [A] → [B] → [[(A,B)]]

Informally, we have:

dcp [x1, x2, ..., xn] [y1, y2, ..., ym]

= [[(x1, y1), (x1, y2), ..., (x1, ym)], [(x2, y1), (x2, y2), ..., (x2, ym)], ..., [(xn, y1), (xn, y2), ..., (xn, ym)]]

The relationship between dcp and cp can be defined succinctly as follows:

cp xs ys = fold (++) (dcp xs ys)

An alternative way to define dcp is in terms of map. Here we want to take each item from xs

in turn, and pair that single item with every item in ys. So, given a function which pairs a single

item to every item in a list (note the parameter order here):

pairtoall :: [B] → A → [(A, B)]

pairtoall ys x = map (pair x) ys

Where pair is defined simply as follows:

pair a b = (a, b)

We could of course substitute pair for the default tupling function used in Haskell. That is to

say:

193

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 194

pair = (,)

However, the word pair itself is probably more readable. Returning to dcp, given our function

pairtoall, we can now write:

dcp xs ys = map (pairtoall ys) xs

We can of course bring the definition of pairtoall into dcp itself, firstly using a Lambda ab-

straction:

dcp xs ys = map (λ x •map (pair x) ys) xs

Or alternatively, with a point-free style:

dcp xs ys = map (flip map ys ◦ pair) xs

The function flip simply reverses the order of another function’s parameters. We have

flip :: (A → B → C) → (B → A → C)

Which is then defined simply as:

flip f y x = f x y

Another alternative would be to use Haskell’s convention for turning a function into an infix

operator, that is:

f a b = a ‘f ‘ b

As such, we have:

dcp xs ys = map ((‘map‘ ys) ◦ pair) xs

We may instead wish to use the binary operator version of map, which can be illustrated as

follows:

map f xs = f ∗xs

This gives us one further alternative definition for dcp:

dcp xs ys = map ((∗ ys) ◦ pair) xs

Or indeed, to change both to the infix version we have:

dcp xs ys = ((∗ ys) ◦ pair) ∗ xs

194

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 195

As a further alternative, we may wish to appeal to the unfold family for a definition.

dcp xs ys = unfoldr (f ys) null xs

where f ys (x : xs) = (map (pair x) ys, xs)

However, in effect, it could be argued, all we are really doing here is using unfoldr to implement

the map scheme, and then using that to re-iterate one of our earlier definitions. A slight variation

of this where ys is passed explicitly between instances of f may prove useful later on:

dcp xs ys = unfoldr f (null ◦ fst) (xs, ys)

where f (x : xs, ys) = (map (pair x) ys, (xs, ys))

Alternatively, we may wish to express this without the pattern matching:

dcp xs ys = unfoldr f (null ◦ fst) (xs, ys)

where f (xs, ys) = (map ((pair ◦ head) xs) ys, (tail xs, ys))

Let us reassure ourselves formally that our function dcp is indeed a valid refinement of cp in

distributed list terms.

([A], [B]) [(A,B)]

([A], [B]) [[(A,B)]]

6
id

6
absD

-
uncurry cp

-uncurry dcp

The proof of this is:

(uncurry cp ◦ id) ([x1, x2, ..., xn], [y1, y2, ..., ym]) {id}
= uncurry cp ([x1, x2, ..., xn], [y1, y2, ..., ym]) {def. id}
= cp [x1, x2, ..., xn] [y1, y2, ..., ym] {def. uncurry}
= [(x, y) | x ← [x1, x2, ..., xn], y ← [y1, y2, ..., ym]] {def. cp}
= fold (++) [[(x, y) | y ← [y1, y2, ..., ym]] | x ← [x1, x2, ..., xn]] {list comp.}
= fold (++) (dcp [x1, x2, ..., xn] [y1, y2, ..., ym]) {def. dcp}
= absD (dcp [x1, x2, ..., xn] [y1, y2, ..., ym]) {def. absD}
= absD (uncurry dcp ([x1, x2, ..., xn], [y1, y2, ..., ym])) {def. uncurry}
= (absD ◦ uncurry dcp) ([x1, x2, ..., xn], [y1, y2, ..., ym]) {def. ◦}

7.14.1 Stream of Streams Output

In the first refinement of dcp we shall consider, we will output the result as a stream of streams.

Here, assuming our inputs are both refined to streams, we have a function sssdcp, which has the

following type:

sssdcp :: bAc → bBc → bb(A,B)cc

195

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 196

We have the following definition, a simple data refinement of our unfold based definition for

dcp:

sssdcp xs ys = sunfoldr f (snull ◦ fst) (xs, ys)

where f (xs, ys) = (smap ((pair ◦ shead) xs) ys, (stail xs, ys))

A simple proof could be constructed to demonstrate that the following refinement property

holds given two input streams s and t:

dcp (absS s) (absS t) = absSS (sssdcp s t)

Process Refinement

Looking at our unfold oriented definition for the stream of streams output we can get an idea of

the required behaviour for a process refinement in this setting. At each step - each application

of f - we produce a stream of a value from xs paired with every value from ys. This implies we

require the entirety of ys for every step of computation, and as such it will have to be read in as

a preliminary stage, and then buffered locally. So in effect we have a process in two stages. The

first stage is required to consume all of ys and store it locally. The second stage is to read from

xs, one item at a time, and for each item output a stream containing that value from xs paired

with every item from ys. In CSP terms we have something along the lines of the following:

SSSDCP = µY • yin.eot ? True → X

|
yin.value ? y → ys := ys+̂+byc; Y

µX• xin.eot ? True → out.eot ! True → SKIP

|
xin.value ? x → Prd(smap (pair x) ys)[out.value/out]; X

Evidently, the sequential nature of this process may often prove far from ideal - it will require

quadratic time - O(nm) steps - to produce the output.

7.14.2 Vector of Streams Output

In the second refinement we shall consider, we shall output the result as a vector of streams. Here,

assuming our inputs are both refined to streams, we have a function svsdcp, which has the following

type:

svsdcpn :: bAc → bBc → 〈b(A, B)c〉n

In practice, the value n which determines the size of the output vector will be dictated by the

size of the first input stream (of type bAc). Informally we have:

196

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 197

svsdcpn bx1, x2, ..., xnc by1, y2, ..., ymc
= 〈b(x1, y1), (x1, y2), ..., (x1, ym)c,

b(x2, y1), (x2, y2), ..., (x2, ym)c,
...,

b(xn, y1), (xn, y2), ..., (xn, ym)c〉n

A simple proof could be constructed to demonstrate that the following refinement property

holds given two input streams s (of length n) and t:

dcp (absS s) (absS t) = absV S (svsdcpn s t)

Given that the size of the output vector of streams is fixed, based on the size of one of the

inputs, we may also reasonably wish to consider refining one of the inputs to a vector also. This

gives us the following alternative:

svsdcp′n :: 〈A〉n → bBc → 〈b(A,B)c〉n

Let us consider a definition for svsdcpn in terms of the unfoldr pattern. As a direct data

refinement of our unfold based definition for dcp we have:

svsdcpn xs ys = vunfoldr pr (snull ◦ fst) (xs, ys)

where pr (xs, ys) = (smap ((pair ◦ shead) xs) ys, (stail xs, ys))

Process Refinement

We shall work with our unfold based definition for our function svsdcpn. Here the important

functionality is contained within the characteristic function pr. Let us consider this.

pr (xs, ys) = (smap ((pair ◦ shead) xs) ys, (stail xs, ys))

The type of pr can be given as follows:

pr :: (bAc, bBc) → (b(A,B)c, (bAc, bBc))

This may be a little awkward to read due to the nested tupling and the overall number of

brackets, but what we have, in effect, is a function which inputs two streams and outputs three.

The roles of each of these inputs will hopefully become clear once we begin to consider a process

refinement for this function. This is illustrated in Figure 7.13.

Here we have a process, PR, which inputs two streams and outputs three. The alphabet of the

process is as follows:

αPR = {xin :: bAc, yin :: bBc, xout :: bAc, yout :: bBc, out :: b(A,B)c}

197

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 198

PR

[x1, x2, ..., xn]
-

[x2, x3, ..., xn]
-

[y1, y2, ..., ym]
-

[y1, y2, ..., ym]
-

?
[(x1, y1), (x1, y2), ..., (x1, ym)]

Figure 7.13: The process PR.

The conduits xin and xout are used for conveying the stream xs. The process PR is responsible

for taking the head of this incoming stream and storing it locally (as the value x) then passing

the remainder (i.e. the tail) on unchanged. The conduits yin and yout are used for conveying

the stream ys. This must pass through the process in its entirety and unchanged. However, each

reception of a value from this stream will prompt transmission of a value in the stream carried by

conduit out. Each transmission in out will constitute the value x paired with a value y received

on yin. We effectively have a process in two stages then. Firstly we have the business of acquiring

our value x and then ferrying on the remainder of ys. Secondly we then have the main task of

producing pairs based on this value x and incoming values from ys. Such a process can be defined

in CSP as follows:

PR = xin.value ? x → SCOPY [xin/in, xout/out];

µX• in.eot ? any → outd.eot ! True → outr.eot ! True → SKIP

|
in.value ? y → outd.value ! (x, y) → outr.value ! y → X

In practice, we may wish to provide a slightly more general version that abstracts away the

manner in which the value x is received. This is depicted in Figure 7.14.

PR(x)[y1, y2, ..., ym]
-

[y1, y2, ..., ym]
-

?
[(x1, y1), (x1, y2), ..., (x1, ym)]

Figure 7.14: The process PR(x).

The process PR(x) has the following alphabet:

αPR(x) = {yin :: bBc, yout :: bBc, out :: b(A, B)c}

We can supply the following definition - effectively just the second stage of PR, given above:

198

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 199

PR(x) = µX• in.eot ? any → outd.eot ! True → outr.eot ! True → SKIP

|
in.value ? y → outd.value ! (x, y) → outr.value ! y → X

Our overall network is then effectively a series of these components composed together in

parallel. In our process refinement for this setting, we are provided with two options for how the

first set of input (xs) is to be delivered. This may arrive as a stream, as in svsdcpn, or as a vector,

as in svsdcp′n. We shall only examine here the definition of the process from the point at which xs

has already been received, and, as such, each instance of PR has already received its corresponding

x value. Our process SV SDCP is illustrated in Figure 7.15.

?
?

?
?

PR(x1) PR(x2) PR(xn−1) PR′(xn)
[y1, y2, ..., ym]- - - - -. . .

[(x1, y1), (x1, y2), ...(x1, ym)]
[(x2, y1), (x2, y2), ...(x2, ym)]

. . .

[(xn−1, y1), (xn−1, y2), ...(xn−1, ym)]
[(xn, y1), (xn, y2), ...(xn, ym)]

Figure 7.15: A process producing a distributed Cartesian product as a vector of streams.

Let us now consider a definition for this process in CSP. As already noted this can be constructed

essentially by composing together a number of instances of our component process PR. Generally

speaking, each instance of PR will be ‘loaded’ with x - a value from xs. It will then receive the

entire stream ys, and output a stream of x paired with each item in ys, as well as echoing the

input stream for the next component along to use. As usual with these kinds of definitions we shall

encounter slight deviations from the norm at either end. The first instance of PR will have the

responsibility of reading the input to the process as a whole. The last instance of PR will have to

deal with the fact that it has no successor to echo the input to. This can proceed as follows:

SV SDCPn = PRinitial ||

n− 1

||
i = 2

PR[midi−1/in, outi/outd,midi/outr]

 || PRfinal

PRinitial = PR[in/in, out1/outd,mid1/outr]

PRfinal = PR′[midn−1/in, outn/outd]

Here PR′ is an adapted version of PR which is not responsible for echoing the input stream.

PR′(x) = µX• in.eot ? any → outd.eot ! True → SKIP

|
in.value ? y → outd.value ! (x, y) → X

199

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 200

7.14.3 Stream of Vectors Output

In this refinement the output is then produced as a stream of vectors. Assuming we refine both

inputs to streams we have a function ssvdcp, which has the following type:

ssvdcpn :: bAc → bBc → b〈(A, B)〉nc

Let us consider a definition for svsdcpn in terms of the unfoldr pattern. As a direct data

refinement of our unfold based definition for dcp we have:

ssvdcpn xs ys = sunfoldr pr (snull ◦ fst) (xs, ys)

where pr (xs, ys) = (vmap ((pair ◦ vhead) xs) ys, (vtail xs, ys))

A simple proof could be constructed to demonstrate that the following refinement property

holds given two input streams s (of length n) and t:

dcp (absS s) (absS t) = absSV (ssvdcpn s t)

Process Refinement

Here we have a similar pattern to that for the stream of streams output. Here, however, rather

than outputting a stream for each value of xs input, we instead output a vector.

SSV DCP = µY • yin.eot ? True → X

|
yin.value ? y → ys := ys+̃+k,1〈y〉1; Y

µX• xin.eot ? True → out.eot ! True → SKIP

|
xin.value ? x → Prd(vmapm (pair x) ys)[out.value/out]; X

7.14.4 Vector of Vectors Output

In the final refinement we have the output being produced as a vector of vectors. Here, assuming

we refine both inputs to streams, we have a function svvdcp, which has the following type:

svvdcpn,m :: bAc → bBc → 〈〈(A,B)〉m〉n

Process Refinement

This would follow a similar patten to the vector of streams output, except that, obviously, the

components of the output vector would be vectors rather than streams. As always, we may ques-

tion the usefulness of a vector of vectors output, given the quadratic requirement on processing

resources.

200

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 201

7.15 Transpose

The function transpose takes in a list of lists as input. Such a structure can be consider as a two

dimensional array with rows and columns. It returns a list of lists where the columns in the input

are rows in the output, and vice verse. This has the following type:

transpose :: [[A]] → [[A]]

Informally, the functionality can be defined as follows:

transpose [[x11, x12, x13, ..., x1n], [x21, x22, x23, ..., x2n], ..., [xm1, xm2, xm3, ..., xmn]]

= [[x11, x21, x31, ..., xm1], [x12, x22, x32, ..., xm2], ..., [x1n, x2n, x3n, ..., xmn]]

Here the value n represents the width of the input list of lists, i.e. the length of each sub-list.

The value m represents the height of the input list of lists, or in other words the count of sub-lists.

So, the input structure has dimensions (n×m) and the output structure has dimensions (m× n).

A formal definition for this function is typically given recursively, as follows:

transpose [] = []

transpose ([] : xss) = transpose xss

transpose ((x : xs) : xss) = (x : [h | (h : t) ← xss]) :

transpose (xs : [t | (h : t) ← xss])

The pattern matching in the list comprehensions above works as a filter: only lists matching

the pattern (h : t) in xss are considered. In effect, empty lists are being filtered out. As such we

could rewrite the above as follows:

transpose [] = []

transpose ([] : xss) = transpose xss

transpose ((x : xs) : xss) = (x : [head ys | ys ← xss, not (null ys)]) :

transpose (xs : [tail ys | ys ← xss, not (null ys)])

These list comprehensions can of course be replaced altogether with map and filter operations:

transpose [] = []

transpose ([] : xss) = transpose xss

transpose ((x : xs) : xss) = (x : map head (filter (not ◦ null) xss)) :

transpose (xs : map tail (filter (not ◦ null) xss))

We can simplify this definition a little further by removing some of the pattern matching. This

will also allow us to simplify the right hand side of the third line. Given that the first two lines

cover all other possible alternative cases, we can make the case in the third line implicit:

transpose [] = []

transpose ([] : xss) = transpose xss

transpose xss = map head (filter (not ◦ null) xss) :

transpose (map tail (filter (not ◦ null) xss))

201

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 202

We may wish to introduce a local definition to avoid the repeated calculation of the filter

operation, as it is the same in both instances.

transpose [] = []

transpose ([] : xss) = transpose xss

transpose xss = map head xss′ :

transpose (map tail xss′)

where xss′ = filter (not ◦ null) xss

We may wish to remove the pattern matching altogether. The main purpose for the second line

of the above definition is to stop unwanted empty lists from appearing in the output - they are

simply discarded altogether. Where the input consists of a mixture of empty lists and non-empty

lists, this shall be dealt with by the filter operation. It is only where the input consists exclusively

of empty lists that we will have a problem. With a correctly constructed condition we can avoid

this situation completely. The condition all null should achieve this. Where this applied to the

input returns true, we shall simply return an empty list. Let us assure ourselves that the required

conditions imposed in our pattern matching based definition shall still hold. First, we have our

original base case:

transpose [] = []

{id}
≡ if all null [] then [] else ... = []

{def. transpose}
≡ if True then [] else ... = []

{all null [] = True}
≡ [] = []

{if}
≡ True

{}
Next, the case where we have an empty list at the head of the input. First let us assume the

remainder of the list is either empty or consists only of empty lists. That is to say all null xss will

be True.

transpose ([] : xss) = transpose xss

{id}
≡ if all null ([] : xss) then [] else ... = if all null xss then [] else ...

{def. transpose}
≡ [] = []

{all null xss = True}
≡ True

{}

202

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 203

Finally we have the case where the input consist of an empty list at the head, followed by a

group xss containing one or more non-empty lists. That is to say all null xss will be False.

transpose ([] : xss) = transpose xss

{id}

≡

if all null ([] : xss)

then []

else map head xss′ :

transpose (map tail xss′)

where xss′

= filter (not ◦ null) ([] : xss)

=

if all null xss

then []

else map head xss′ :

transpose (map tail xss′)

where xss′

= filter (not ◦ null) xss

{def. transpose}

≡

map head xss′ :

transpose (map tail xss′)

where xss′

= filter (not ◦ null) ([] : xss)

=

map head xss′ :

transpose (map tail xss′)

where xss′

= filter (not ◦ null) xss

{all null xss = False}

≡

map head xss′ :

transpose (map tail xss′)

where xss′

= filter (not ◦ null) xss

=

map head xss′ :

transpose (map tail xss′)

where xss′

= filter (not ◦ null) xss

{filter (not ◦ null)}

≡ True

{}

Thus we arrive at the following definition:

transpose xss = if all null xss then []

else map head xss′ : transpose (map tail xss′)

where xss′ = filter (not ◦ null) xss

Close inspection of the above definition should reveal it is in fact an instance of the unfoldr

higher order function. Thus we can give an alternative definition for transpose as follows:

transpose = unfoldr (fork (map head, map tail) ◦ filter (not ◦ null)) (all null)

We can also define transpose in terms of the left variant of unfold:

203

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 204

transpose = unfoldl (fork (map init,map last) ◦ filter (not ◦ null)) (all null)

Given two further ‘primitive’ transformations on two dimensional arrays:

flipv = reverse

fliph = map reverse

We may then define a whole set of transformation functions as follows:

rotate90 = fliph ◦ transpose

rotate180 = fliph ◦ flipv

rotate270 = flipv ◦ transpose

transverse = fliph ◦ flipv ◦ transpose

Let us now consider how our function transpose may be refined in our various settings. In

certain settings, particularly where vectors are involved, we may want to work with a slightly

different definition of transpose. The function transpose′ operates in the same way, but is only

defined for the case where all sub-lists in the input list of lists are of equal length. The definition is

therefore almost identical to that for transpose, except that it lacks the filter operation to remove

empty lists. We have:

transpose′ = unfoldr (fork (map head, map tail)) (all null)

7.15.1 Stream of Streams to Stream of Streams

In this, a fully sequential refinement, we shall both input and output a stream of streams. Thus

we have the function:

sssstranspose :: bbAcc → bbAcc

We may provide a definition for this as follows:

sssstranspose = sunfoldr (f ◦ p) (sall snull)

where f = fork (smap shead, smap stail)

p = sfilter (not ◦ snull)

7.15.2 Vector of Vectors to Vector of Vectors

Here we have both input and output as a vector of vectors. The type of this function clearly

illustrates the change in dimensions of the input structure as it is processed to form the output.

vvvvtransposen,m :: 〈〈A〉m〉n → 〈〈A〉n〉m

204

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 205

7.15.3 Vector of Streams to Vector of Streams

Here we have both input and output as a vector of streams. However, given the nature of transpose,

the size of the output vector of streams will not necessarily be the same as the input. Given the

use of vectors in this refinement, we shall actually derive a refinement for transpose′ rather than

the more general transpose. We have:

vsvstranspose′n,m :: 〈bAc〉n → 〈bAc〉m

We may provide a definition for this as follows:

vsvstranspose′n,m = vunfoldrm f (valln snull)

where f = fork (v2smapn shead, vmapn stail)

7.15.4 Stream of Vectors to Stream of Vectors

Here we have both input and output as a stream of vectors. Again, given the nature of transpose,

the size of the output stream of vectors will not necessarily be the same as the input.

svsvtransposen,m :: b〈A〉mc → b〈A〉nc

7.15.5 Stream of Vectors to Vector of Streams

A further refinement we may be interested in has the input as a stream of vectors and the output

as a vector of streams.

svvstransposem :: b〈A〉mc → 〈bAc〉m

7.15.6 Vector of Streams to Stream of Vectors

The final refinement for transpose we shall examine has the input as a vector of streams, and the

output as a stream of vectors.

vssvtransposen :: 〈bAc〉n → b〈A〉nc

7.16 Segments

The function segments takes in a list, and returns a list of all segments of that list.

segments :: [A] → [[A]]

Another way to describe this collection is as every initial segment of every final segment of the

input list. This corresponds to mapping the function inits to the results of the function tails, and

then concatenating the results. We have:

205

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 206

segments = fold (++) ◦map inits ◦ tails

As an example, we have:

segments [x1, x2, x3] = [[], [x1], [x1, x2], [x1, x2, x3], [], [x2], [x2, x3], [], [x3], []]

To help illustrate this behaviour, let us also show the results without concatenation, so we can

see where each part comes from:

(map inits ◦ tails) [x1, x2, x3] =

[

[[], [x1], [x1, x2], [x1, x2, x3]], = inits [x1, x2, x3]

[[], [x2], [x2, x3]], = inits [x2, x3]

[[], [x3]], = inits [x3]

[[]] = inits []

]

For an input list of size n, the size of the output (in terms of number of lists) returned by

segments+ is O(n2). To be precise, given an input list of size n, we have the following number of

lists in the output:

(n + 1)2 + n + 1

2

In many algorithms we may find the repeated occurrence of the empty list here somewhat

cumbersome. As such we have a variant segments+, which can be defined analogously to segments,

but using tails+ and inits+ instead of tails and inits. We have:

segments+ = fold (++) ◦map inits+ ◦ tails+

This has the same type as segments:

segments+ :: [A] → [[A]]

The results when applied to a list are identical to that for segments, except that no empty lists

appear in the output. For example:

segments+ [x1, x2, x3] = [[x1], [x1, x2], [x1, x2, x3], [x2], [x2, x3], [x3]]

For an input list of size n, the size of the output (in terms of number of lists) returned by

segments+ is O(n2). To be precise, given an input list of size n, we have the following number of

lists in the output:

n2 + n

2

206

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 207

7.16.1 Stream to Stream of Streams

In this refinement we input a stream, and output the segments as a stream of streams.

ssssegments :: bAc → bbAcc

We can define this as follows:

ssssegments = sfold (+̂+) ◦ smap sssinits ◦ ssstails

7.16.2 Stream to Vector of Streams

In this refinement we input a stream, and output the segments as a vector of streams.

svssegments :: bAc → 〈bAc〉n

We can define this as follows:

svssegments = vfold (+̂+) ◦ vmap sssinits ◦ svstails

7.17 Splits

The function splits takes in a list, and returns all the possible ways to partition the input list into

two parts. Every pair of lists in the output should result in the input list when concatenated back

together. That is to say:

(all (== xs) ◦map (uncurry (++)) ◦ splits) xs = True

We have:

splits [a1, a2, · · · , an]

= [([], [a1, a2, · · · , an]), ([a1], [a2, · · · , an]), ([a1, a2], [a3, · · · , an]),

· · · ,
([a1, a2, · · · , an−1], [an]), ([a1, a2, · · · , an], [])]

This function has the following type:

splits :: [A] → [([A], [A])]

We may also wish to consider a variant splits+, which does not contain the empty list in its

output. Informally, we have:

splits+ [a1, a2, · · · , an]

= [([a1], [a2, · · · , an]), ([a1, a2], [a3, · · · , an]), · · · , ([a1, a2, · · · , an−1], [an])]

We can provide a definition for splits in terms of take and drop, as follows:

207

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 208

splits xs = map (sp xs) [0 .. length xs]

where sp xs n = (take n xs, drop n xs)

Similar we just have to modify the bounds of the enumeration in the above definition to create

a definition for splits+.

splits+ xs = map (sp xs) [1 .. (length xs)− 1]

where sp xs n = (take n xs, drop n xs)

Our splits functions do in fact come under the broad umbrella of the unfold family. In our

definition of unfoldr, (see Section 6.4) however, the manner in which the end condition is dealt

with does not suit the functionality of splits in an ideal fashion. To illustrate this consider the

following potential definition:

splits′ xs = unfoldr f (null ◦ fst) (xs, [])

where f (xs, ys) = ((xs, ys), (init xs, last xs : ys))

Let us consider applying the above definition, to the list of values [1, 2, 3]. We have:

splits′ [1, 2, 3] = [([1, 2, 3], []), ([1, 2], [3]), ([1], [2, 3])]

Crucially we are missing the last element in the output - the pair of the empty list followed by

the complete list. Of course, we can remedy this situation by adding this element explicitly into

the definition:

splits xs = (unfoldr f (null ◦ fst) (xs, [])) ++ [([], xs)]

where f (xs, ys) = ((xs, ys), (init xs, last xs : ys))

Another we to approach an unfold oriented definition is to pass each characteristic function a

value k, as used with the original take / drop approach. Here we have the following:

splits xs = unfoldr f p (0, xs)

where f (k, xs) = ((take k xs, drop k xs), (k + 1, xs))

p(k, xs) = k > length xs

7.17.1 Vector of Streams Output

Assuming we take a stream as input, we have the following type definition:

svssplitsn :: bAc → 〈(bAc, bAc)〉n+1

Alternatively, taking a vector as input we have:

vvssplitsn :: 〈A〉n → 〈(bAc, bAc)〉n+1

Similarly for the non empty list variant we have:

svssplits+
n :: bAc → 〈(bAc, bAc)〉n+1

vvssplits+
n :: 〈A〉n → 〈(bAc, bAc)〉n+1

208

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 209

Process Refinement

We shall base our refinement on the take / drop oriented specification. Let us consider a single

component process SP (k). This is depicted in Figure 7.16. We have the following alphabet:

α SP (k) = {in :: bAc, outr :: bAc, outda :: bAc, outdb :: bAc}

? ?

SP (k)
[x1, x2, ..., xn]- [x1, x2, ..., xn]-

[x1, x2, ..., xk] [xk+1, xk+2, ..., xn]

Figure 7.16: The process SP(k).

The process SP (k) has the task of taking in a stream, xs, echoing it on one of its output

conduits (outr), and then splitting it over the other two output conduits (outda and outdb). The

stream should be split using the value k - the first k values to be transmitted on outda, and all

those after the first k to be transmitted on outdb. In CSP terms we have the following process:

SP (k) = if (k > 0)

then in.value ? x → outr.value ! x → outda.value ! x → SP (k − 1)

else outda.eot ! True → SDUP [in/in, outr/out1, outdb/out2]

The process SDUP used here simply echoes all values on its input stream to its two output

streams. It can be defined as follows (see also Section 4.7):

SDUP = µX• in.eot ? any → out1.eot ! True → out2.eot ! True → SKIP

|
in.value ? x → out1.value ! x → out2.value ! x → X

? ?
? ?

? ?
? ?

SP (0) SP (1) SP (n− 1) SP (n)
[x1, x2, ..., xn]- - - - -. . .

[] [x1, x2, ..., xn]
[x1] [x2, x3, ..., xn]

. . .

[x1, x2, ..., xn−1] [xn]
[x1, x2, ..., xn] []

Figure 7.17: The process VSSPLITS.

We then have the now familiar task of composing together a number of instances of this compo-

nent together in parallel to create our process refining the functionality of splits. This is depicted

in Figure 7.17. In CSP terms we have the following:

209

CHAPTER 7. REFINEMENT OF LIST PROCESSING FUNCTIONS 210

V SSPLITSn = SPinitial ||

n− 1

||
i = 1

SPnormal

 || SPfinal

SPnormal = SP [midi/in, outai+1/outda, outbi+1/outdb,midi+1/outr]

SPinitial = SP [in/in, outa1/outda, outb1/outdb,mid1/outr]

SPfinal = SCOPY [midn/in, outan+1/outda]; outbn+1.eot ! True → SKIP

7.18 Summary

We have explored a large selection of functions for processing lists, and seen how they can be

implemented in stream and vector terms. One particular result of this exploration has been in the

recognition of the widespread applicability of the unfold pattern. In this chapter we have seen

how this scheme can be used to express a number of combinatorial list processing functions, such

as inits and tails, Cartesian product, transpose and splits. It is the vector interpretation of the

unfold pattern which is key to providing scalable implementations for many of these components

which deal in quadratic sized output.

210

Chapter 8

The Refinement Procedure

8.1 Introduction

In this chapter we describe the refinement procedure - the process through which a developer would

go to derive an implementation using this methodology.

8.2 Procedure

There are a number of steps involved in the refinement procedure, as illustrated in Figure 8.1. We

look at each of the steps in detail below.

Step 1: Initial Specification
?

(initial functional specification)
?

Step 2: Program Transformation
?

(transformed functional specification)
?

Step 3: Data Refinement
?

(data refined functional specification)
?

Step 4: Process Refinement
?

(CSP process network)
?

Step 5: Implementation
?

(Handel-C Implementation)

Figure 8.1: An illustration of the steps in the refinement procedure.

211

CHAPTER 8. THE REFINEMENT PROCEDURE 212

8.2.1 Step 1 - Initial Specification

The first task for the developer is to formulate an initial functional specification for the algorithm in

Haskell. Typically this will often be an intuitive specification, which may not be the most efficient,

and may not initially be in a form best suited to the remainder of the refinement process. Both of

these issues can be dealt with in the next step.

It is at this stage that proofs can be constructed and properties about the specification can be

asserted, if necessary. Alternatively, another approach may be to formally derive this functional

specification from a specification in another framework such as Z - examples of this kind of approach

can be found in [7, 12]

8.2.2 Step 2 - Program Transformation

Depending on the structure of the initial specification, some program transformation may be re-

quired. An ideal form to begin refinement from is one which is a composition of stages, wherein

the maximum possible use of higher order (and list processing) functions is made. Additionally we

may also strive to make efficiency improvements here, particularly where the initial specification

is worse than quadratic time. BMF provides a rich framework for program transformation, and

much work has been carried out in using this framework to improve the efficiency of algorithms

[16, 31, 19].

8.2.3 Step 3 - Data Refinement

It is at this stage that the developer should make choices about how the types in the specification

are to be refined, as discussed in Chapter 3. Single dimensional structures (i.e. lists) can be refined

to either streams or vectors, two dimensional structures (lists of lists) are presented with the four

combinations of the two basic types as options, and so on.

It is here that the developer begins to select components from the library presented in this work.

The higher order (and list processing) functions present in the specification from the previous step

will require appropriate data refined versions at this step. Indeed, the library may in fact assist the

developer in making decisions about how data refinement is best to be carried out. For example, if

the first stage of the algorithm employs a Cartesian product, the developer may determine, upon

browsing the available refinements of cp in the library, that the vector of streams output is the most

efficient approach. As another example, presence of filter in the specification may, on consulting

the library, allow us to decide that a straightforward vector approach is not appropriate for that

part of the algorithm. Naturally, decisions about the first stage of the algorithm will then have an

impact on the data refinement decisions made for the second stage, and so on. Each stage must

accept input in the same format as the output of the previous stage. In fact we may often see the

decisions about how to refine the types of the first stage determining the eventual structure of the

212

CHAPTER 8. THE REFINEMENT PROCEDURE 213

entire resulting network.

It is possible the developer may wish to consider several alternative data refinement strategies

at this stage. This is most likely to be the case where varying degrees of parallelism can be

achieved through alternative uses of vectors, streams and combinations thereof. From here on the

developer would then choose one particular data refined specification with which to proceed onto

the next step. If it turns out further down the line that this does not meet the efficiency or resource

requirements in the implementation, then the developer may return to this stage and try another

alternative. In effect we have a potentially iterative process from here on.

One particularly useful construct for controlling the extent of parallelism is the distributed list.

See Section 3.6.4 for a discussion of refining distributed lists or Section 5.2.6 for an example of

how they can be used in conjunction with map. Here we have an intermediate data refinement

step, whereby lists are partitioned into lists of lists. These two dimensional structures can then

be refined to efficient communication patterns which provide scope for parallelism, such as vectors

of streams. This gives us an extra tuning control on the extent of parallelism - by adjusting the

partition sizes we can go from modest parallelism to entirely parallel implementations.

Note also that we do not have to ‘set in stone’ the sizes of any fixed length structures (i.e.

vectors) we are using at this point. Components in the library which work with vectors are

all parameterised - typically they have a subscript n (take for example vmapn). Indeed this

parametrisation continues right the way through to Handel-C. So from here on we can develop an

algorithm which is in effect parameterised on the problem size. It is only at the last minute - when

we come to compile our resulting Handel-C implementation - that we need to set the size we are

dealing with.

8.2.4 Step 4 - Process Refinement

Here we take our data refined functional specification, the result of the previous step, and refine

it to a network of CSP processes. The functional, data refined versions of components from the

library which appear in the specification can be refined to their already proven CSP counterparts

in the library. Here function composition is refined to process piping, and function application to

process feeding, all as discussed in Chapter 4. Parts of the specification which are not taken from

the library - the bespoke functionality - will need to be refined by the developer into CSP here.

Assuming the developer adheres to the rules for process refinement presented in this work for any

such bespoke functionality, then we will be able to assert that the resulting network as a whole is

correct by construction.

At this point we have a network of CSP processes. Reasoning about behaviour and concurrency

should be carried out here, if necessary. For example, we may wish to visualise the network [8] or

perform model checking [30] on certain aspects of it.

213

CHAPTER 8. THE REFINEMENT PROCEDURE 214

8.2.5 Step 5 - Implementation

Finally we take our CSP definition and implement it in Handel-C. Again, components from the

library can be implemented by way of their counterpart Handel-C implementations, also provided

in the library. Any bespoke functionality introduced will need to be implemented by the developer

here based on the CSP definition created in the previous step.

The Handel-C implementation can now be compiled, and the result of the compiler (typically

an EDIF file) can be taken and processed by a suite of place and route tools. The result of this

is a programming file which can be used to configure the FPGA, and the algorithm can then be

executed.

At this point the developer may wish to iterate certain parts of the refinement procedure. There

are two possible scenarios which may prompt this.

Firstly, it may occur that the resulting design is in fact too large to implement on the target

FPGA device. This eventuality will typically manifest itself by way of the place and route tools

failing to map the design. Where the algorithm is parameterised on problem size - some value n -

the developer may wish to adjust this in the Handel-C implementation and try again. The other

alternative is to return to the data refinement step and consider alternatives which may result in

a less complex design - typically achieved by reducing the use of parallelism. Certain parts of the

algorithm which employed vectors may have to be substituted for stream implementations, although

this will have an obvious impact on efficiency. Where distributed lists have been employed in the

data refinement we can simply adjust the partition sizes - larger partition sizes will correspond to

reduced parallelism and therefore smaller designs.

On the flip side it may also occur that the resulting design does not make full use of the

resources available on the target FPGA. Again, a return to the data refinement step, or adjusting

of the problem/partition sizes where applicable may allow for a more efficient algorithm with the

available scope for parallelism better exploited.

8.3 Example

Let us consider a simple problem to illustrate this refinement process. Consider a function, calc,

which is required to sum the squares of all negative numbers in a list. For example:

calc [3,−6, 2,−7, 3,−5, 2] = 110

8.3.1 Step 1 - Initial Specification

Our function calc is required to take in a list of integers and return a single integer. This gives us

the following type:

calc :: [Int] → Int

214

CHAPTER 8. THE REFINEMENT PROCEDURE 215

A list comprehension will allow us to calculate the squares of all the negative numbers in xs.

To sum these we shall require a fold. This gives us the following starting specification:

calc xs = fold (+) [x2 | x ← xs, x < 0]

8.3.2 Step 2 - Program Transformation

In this case we have a fairly simple task - we wish to convert our list comprehension based specifi-

cation into a compositional form. See Section 7.6 for some transformation rules to achieve this.

calc xs = fold (+) [x2 | x ← xs, x < 0] {def. calc}
= (fold (+) ◦ map sq) [x | x ← xs, x < 0] {LC2}
= (fold (+) ◦ map sq ◦ filter (< 0)) [x | x ← xs] {LC3}
= (fold (+) ◦ map sq ◦ filter (< 0)) xs {LC1}

As such we arrive at the following compositional form for calc:

calc = fold (+) ◦ map sq ◦ filter (< 0)

Alternatively, we may find it convenient to replace our operators with simple functions:

calc = fold plus ◦ map sq ◦ filter isneg

8.3.3 Step 3 - Data Refinement

The presence of filter in our specification means that we can not refine our input list directly to

a vector (See Section 6.3). We shall instead consider two other alternatives here.

Stream Refinement

Our first alternative is to refine calc to a function scalc, which inputs a stream of integers and

outputs a single integer. As such we have the type:

scalc :: bIntc → Int

Such a function must allow the following diagram to commute, in order for us to state that it

is a valid refinement of calc:

[Int] Int

bIntc Int

6
absS

6
id

-calc

-scalc

215

CHAPTER 8. THE REFINEMENT PROCEDURE 216

We shall find the definition presents itself somewhat mechanically during the proof:

(calc ◦ absS) bx1, x2, ..., xnc {id}
= (fold (+) ◦ map sq ◦ filter (< 0) ◦ absS) bx1, x2, ..., xnc {def. calc}
= (fold (+) ◦ map sq ◦ absS ◦ sfilter (< 0)) bx1, x2, ..., xnc {sfilter}
= (fold (+) ◦ absS ◦ smap sq ◦ sfilter (< 0)) bx1, x2, ..., xnc {smap}
= (id ◦ sfold (+) ◦ smap sq ◦ sfilter (< 0)) bx1, x2, ..., xnc {sfold}
= (id ◦ scalc) bx1, x2, ..., xnc {def. scalc}

Thus scalc is defined as follows:

scalc = sfold (+) ◦ smap sq ◦ sfilter (< 0)

This definition of scalc has linear complexity.

Vector of Streams Refinement

If we can partition the list, we will be able to perform much of the computational effort inde-

pendently in parallel, and thus increase the efficiency. First we need to derive a distributed list

refinement of calc. For this, we shall require the function tdcalc.

tdcalc :: [[Int]] → Int

Proof that this is a valid refinement of calc will require the following diagram to commute:

[Int] Int

[[Int]] Int

6
absD

6
id

-calc

-tdcalc

We can prove this in a similar manner to the above.

(calc ◦ absD) [l1, l2, ..., ln] {id}
= (fold (+) ◦ map sq ◦ filter (< 0) ◦ absD) [l1, l2, ..., ln] {def. calc}
= (fold (+) ◦ map sq ◦ absD ◦ tdfilter (< 0)) [l1, l2, ..., ln] {tdfilter}
= (fold (+) ◦ absD ◦ tdmap sq ◦ tdfilter (< 0)) [l1, l2, ..., ln] {tdmap}
= (id ◦ tdfold (+) ◦ tdmap sq ◦ tdfilter (< 0)) [l1, l2, ..., ln] {tdfold}
= (id ◦ tdcalc) [l1, l2, ..., ln] {def. tdcalc}

Thus tdcalc is defined as follows:

tdcalc = tdfold (+) ◦ tdmap sq ◦ tdfilter (< 0)

From here we can decide on a communication mechanism. Given the use of filter, our only

options from our selection of two dimensional structures are the stream of streams, and the vector

216

CHAPTER 8. THE REFINEMENT PROCEDURE 217

of streams. In the pursuit of increasing efficiency, we shall opt for the vector of streams. We may

now attempt to refine tdcalc into a vector of streams definition. Such a function may be declared

as follows:

vscalcn :: 〈bIntc〉n → Int

Here the subscript n denotes the count of partitions. We can determine the size of each partition

by dividing the overall input size by n. Proof that vscalcn forms a valid refinement of tdcalc requires

the following diagram to commute:

[[Int]] Int

〈bIntc〉n Int

6
absV S

6
id

-tdcalc

-vscalc

The proof may proceed in a now familiar fashion:

(tdcalc ◦ absV S) 〈s1, s2, ..., sn〉n {id}
= (tdfold (+) ◦ tdmap sq ◦ tdfilter (< 0) ◦ absV S) 〈s1, s2, ..., sn〉n {def. tdcalc}
= (tdfold (+) ◦ tdmap sq ◦ absV S ◦ vsfilter (< 0)) 〈s1, s2, ..., sn〉n {vsfilter}
= (tdfold (+) ◦ absV S ◦ vsmap sq ◦ vsfilter (< 0)) 〈s1, s2, ..., sn〉n {vsmap}
= (id ◦ vsfold (+) ◦ vsmap sq ◦ vsfilter (< 0)) 〈s1, s2, ..., sn〉n {vsfold}
= (id ◦ vscalc) 〈s1, s2, ..., sn〉n {def. vscalc}

We are now presented with a definition for calc, vscalc, in terms of a vector of streams:

vscalcn = vsfoldn (+) ◦ vsmapn sq ◦ vsfiltern (< 0)

This definition gives us scope for better than linear complexity.

It may be useful to recall the relationships between calc, tdcalc and vscalc.

tdcalc = calc ◦ absD

vscalc = tdcalc ◦ absV S

vscalc = calc ◦ absD ◦ absV S

8.3.4 Step 4 - Process Refinement

Stream Refinement

Here we take the data refined functions in our specification scalc and refine them to processes. All

of the components we have used can be found in our library, meaning that process definitions are

already at hand. Given that the operator to be used with our fold function is associative, we are

at liberty to choose any interpretation of fold we see fit - we shall opt for the left directed version

217

CHAPTER 8. THE REFINEMENT PROCEDURE 218

here as it removes the requirement for buffering. Finally, we simply need to know how to combine

these building blocks. Composition between these functions corresponds to stream piping between

processes. As a result, we have:

SCALC = SILTER (isneg) À SMAP (sq) À SFOLDL1(plus)

Note here that we are dealing with basic streams of items, so we can appeal to the simple

case definitions of each of our higher order processes. In other words, they are parameterised by

expressions rather than processes. The process SCALC is depicted in Figure 8.2.

-r
in
xs SFILTER

(isneg)
- SMAP

(sq)
-SFOLDL1

(plus)
-rresult

out

Figure 8.2: The process SCALC.

Vector of Streams Refinement

As before we now have the task of taking the components in our specification vscalc and refining

them to processes. This is again a straightforward task of replacing functional components from

our library with their CSP counterparts. Here communication between stages is achieved through

vectors of streams, so we refine function composition to vector piping. We have:

V SCALCn = V SFILTERn (isneg) Àn V SMAPn(sq) Àn V SFOLDL1n (plus)

This network is depicted in Figure 8.3.

V SFILTERn

(< 0)

V SMAPn

(sq)

V SFOLDL1n

(+)

? ? ?
SFILTER

(isneg)
SFILTER

(isneg)
SFILTER

(isneg)

? ? ?

[x1, x2, ..., xk] [xk+1, xk+2, ..., xk+k] [xm−k+1, xm−k+2, ..., xm]

SMAP
(sq)

SMAP
(sq)

SMAP
(sq)

? ? ?
SFOLDL1

(plus)
SFOLDL1

(plus)
SFOLDL1

(plus)

? ?

(plus) (plus)- - - -. . .

. . .

. . .

result

Figure 8.3: The VSCALC process network.

218

CHAPTER 8. THE REFINEMENT PROCEDURE 219

Here we have an input of size m split into n partitions each of size k. As the illustration

highlights, the resulting network is effectively a parallel composition of n instances of our stream

refinement - SCALC, with a fold stage at the end to collate the results.

Recall from Sections 5.2, 5.3 and 6.3 that the processes we have employed here can actually be

built up of other simpler processes. We have:

V SFOLDL1n(f) = V MAPn (SFOLDL1 (f)) Àn V SFOLDL1n(f)

V SMAPn(f) = V MAPn (SMAP (f))

V SFILTERn(p) = V MAPn (SFILTER (p))

As a result we can also express our network using this expanded definition:

V SCALCn = V MAPn (SFILTER (isneg)) Àn V MAPn (SMAP (sq)) Àn

V MAPn (SFOLDL1 (plus)) Àn V SFOLDL1n(plus)

8.3.5 Step 5 - Implementation

Our final step is to take our networks of CSP processes and implement them in Handel-C. As before,

we have relied heavily on components from our library, and as such the bulk of the implementation

effort is done already. The bespoke functionality here requires just a few simple expressions to be

defined:

macro expr isneg(x) = x<0;
macro expr sq(x) = x*x;
macro expr plus(x,y) = x+y;

Stream Refinement

The Handel-C definition for SCALC is given in Figure 8.4.

macro proc SCALC (streamin,itemout)
{

Stream (Item (Int)) mida;
Stream (Item (Int)) midb;

par
{

SFILTER_SIMPLE (streamin,mida,isneg);
SMAP_SIMPLE (mida,midb,sq);
SFOLDL1_SIMPLE (midb,itemout,plus);

}
}

Figure 8.4: Handel-C definition for the process SCALC.

Vector of Streams Refinement

The Handel-C definition for VSCALC is given in Figure 8.5.

219

CHAPTER 8. THE REFINEMENT PROCEDURE 220

macro proc VSCALC (n,vsin,itemout)
{

Vector (Stream (Item (Int)), mida, n);
Vector (Stream (Item (Int)), midb, n);
Vector ((Item (Int), midc, n);

par
{

VMAP (n,vsin,mida,SFILTER_isneg);
VMAP (n,mida,midb,SMAP_sq);
VMAP (n,midb,midc,SFOLDL1_plus);
VFOLDL1 (n,midc,itemout,plus);

}
}

Figure 8.5: Handel-C definition for the process SCALC.

Here SFILTER_isneg, SMAP_sq and SFOLDL1_plus are simply synonyms for the appropriate

higher order process component, specialised with the appropriate expression. It is necessary to

specify these in this way as Handel-C does not support currying. For example:

macro proc SFILTER_isneg (in, out)
{

SFILTER_SIMPLE (in,out,isneg);
}

Evaluation

The developer may now wish to evaluate the relative merits of the two alternative implementations

which have been derived. Compiling these and going through the place and route tools should give

an indication of the resource requirements. The resulting configuration files can then be tested on

the FPGA device to evaluate performance. Based on these finding the developer may then wish

to repeat part of the design process, as discussed previously. For the vector of streams refinement,

based on distributed lists, the extent of parallelism can be tuned by adjusting the partition size.

8.4 Summary

In this chapter we have described the full refinement procedure, from start to finish. We now

have a step by step process we can follow for refining a functional specification into a hardware

implementation in Handel-C. Through an example we have illustrated how this procedure achieves

a number of desirable goals - improved ease and speed of development, whilst all throughout

ensuring correctness and enabling flexibility in the design.

220

Chapter 9

Case Studies

9.1 Introduction

In this chapter we present a number of case studies which demonstrate the application of this

methodology. We first look at a number of smaller, illustrative case studies - a selection of sorting

algorithms. These are provided purely for illustration, and we do not provide actual results gathered

from implementation on an FPGA.

Following on from this we take on two slightly more involved problems - a pair of combinatorial

list processing algorithms. We follow these case studies right the way to implementation on the

FPGA, and produce a set of results for varying problem sizes.

After this we move on to more substantial real world applications - a JPEG decoder and an

algorithm for DNA processing, and also attempt to produce results for these from implementation

on the FPGA.

9.2 Sorting

Sorting is frequently used as a case study for new or different programming techniques. There

may be several reasons for this. Undoubtedly the purpose, and usually the behaviour, of any given

sorting algorithm is generally clear and easy to understand. Furthermore there exists a set of

widely known sort algorithms, whose relative merits are well understood and have been extensively

tested. Particularly, we know already the efficiency of all the commonly used sorting algorithms.

We shall examine four basic sorting algorithms here - insert sort, merge sort, selection sort and

quick sort. We shall look at how hardware implementations may be derived from each of these

algorithms. We shall not, however, go so far as to actually implement these first case studies on

an FPGA - these are intended purely for illustration of the design process.

CHAPTER 9. CASE STUDIES 222

9.2.1 Insert Sort

The insert sort algorithm is perhaps the most intuitive of those we will examine here, as it cor-

responds to the method most people will use to sort manually. We effectively maintain two lists,

one of unsorted items, which is initially the input list, and one of sorted items, which is initially

empty. At each step, we remove the first item from the unsorted list and traverse the sorted list

until we find the correct place to insert it.

Step 1 - Intitial Specification

A functional definition of this algorithm may proceed as follows. First, considering the functionality

of the insert function, which takes a sorted list and a single item, and returns the list with that

item inserted at the correct position.

insert a [] = [a]

insert a (x : xs) = if a < x

then a : x : xs

else x : insert a xs

For the sorting algorithm as a whole, we are simply applying the function above repeatedly,

once for every item in the unsorted list, in order to gradually build up the sorted list. We have:

insertsort [] = []

insertsort (x : xs) = insert x (insersort xs)

The type of the function insert is defined as follows:

insert :: A → [A] → [A]

The type of the algorithm is, of course, defined as follows:

insertsort :: [A] → [A]

As already mentioned, the efficiency of this algorithm is already well known - it has O(n2)

efficiency. This can be confirmed somewhat intuitively. For a list of length n, we make a pass of

the sorted list for each item being inserted into it. Each pass may require up to n steps.

Step 2 - Program Transformation

Our definition for the insert sort algoritm above is actually an instance of the fold pattern, we

have:

insertsort s = foldr insert [] s

This is now a convenient form from which to begin refinement. As has already been shown in

[2], this pattern can be refined to a pipelined implementation.

222

CHAPTER 9. CASE STUDIES 223

Step 3 - Data Refinement

Let us consider how we may refine the datatypes in this algorithm. We shall only examine the

derivation briefly here, given that this case study has already been explored in [2]. In this case we

are aiming for a process refinement of insertsort which both inputs and outputs a stream. First,

we have the necessary data refinement:

sinsertsort :: bAc → bAc

The implementation should follow directly:

sinsertsort s = sfoldr sinsert bc s

Which will also require a refinement of insert in stream terms:

sinsert :: A → bAc → bAc

As demonstrated in [2], from this definition we can derive the following which uses n instances

of the function sinsert folded together with the composition operator:

sinsertsort s = (◦) / (smap sinsert s) bc

Step 4 - Process Refinement

In process terms, the above definition corresponds to a pipeline of processes, as discussed in Sec-

tion 4.5. In CSP we can express this pipeline as follows:

Prd(bc) ¤

n

À
i = 1

SINSERT (xi)

The process SINSERT here can be defined as follows, and can be derived as a simple recursion

unrolling (see Section 4.6) of our original specification insert:

SINSERT (a) =

µX•
in.eot ? any → (out.value ! a → out.eot ! True → SKIP)

|

in.value ? x →

out.value ! a → out.value ! x → COPY

<| a < x |>
out.value ! x → X

This insert sort process is depicted in Figure 9.1.

223

CHAPTER 9. CASE STUDIES 224

SINSERT
(x1)

SINSERT
(x2)

SINSERT
(xn−1)

SINSERT
(xn)

[] - - - - - -

insertsort
[x1, x2, ..., xn]. . .

Figure 9.1: The insert sort process.

Step 5 - Handel-C Implementation

An implementation in Handel-C of the SINSERT process can follow naturally from the CSP

definition. We have:

macro proc SINSERT (in,out,x)
{

typeof(x) a;
Bool eot;
eot = False;
while (!eot)
{

prialt
{
case in.value ? x:

if (a<x)
{

out.value ! a;
out.value ! x;
SCOPY (in,out,eot);

}
else
{

out.value ! x;
}
break;

case in.eot ? eot:
out.value ! a;
out.eot ! eot;
break;

}
}

}

Thus we can provide a simple Handel-C implementation for our insert sort algorithm as follows:

macro proc SINSERTSORT (streamout, n, xs)
{

Stream(Item(Value)) mid[n];
par (i=0;i<=n;i++)
{

ifselect (i==0)
mid[0].eot ! True;

else ifselect (i<n)
SINSERT (mid[i-1],mid[i],xs[i-1]);

else // ifselect (i==n)
SINSERT (mid[i-1],streamout,xs[i-1]);

224

CHAPTER 9. CASE STUDIES 225

}
}

9.2.2 Selection Sort

The selection sort (or min sort) algorithm is perhaps another based on an intuitive ‘human’ sorting

strategy. Here we maintain two lists, one sorted and one unsorted. To begin with our sorted list

is empty, and our unsorted list is the input list. At each step we scan the unsorted list to find the

lowest value, and remove it, placing it at the tail of the sorted list.

Step 1 - Intitial Specification

The characteristic function here is one that extracts the lowest value from the list. That is to say,

takes in a list, and returns a pair, wherein the first item of the pair is the lowest value, and the

second item is the input list with the lowest item removed. We have:

minex :: [A] → (A, [A])

minex xs = (x, remove x xs)

where x = fold (↓) xs

Where remove is a function which removes the first occurrence of a given element from a list

(a definition is given below). Given the function minex, we can show that our algorithm minsort

is in fact an instance of the unfold pattern:

minsort xs = unfoldr minex null xs

The above definition for minex gives us a high level specification of the required functionality.

It tells us that a pair is required as output, with two components as previously described - the

lowest item and the remaining list. Considering an implementation that exploits some parallelism,

however, we may wish to massage the above definition into a slightly different form. The issue here

is one of ‘interactivity’. Currently the dependencies in minex are such that the entirety of the input

list must be consumed before any output can be produced. The remaining items are returned by

remove, but this cannot begin to operate until (fold (↓) xs) has been calculated, which of course

requires that the entire input list has been consumed. However, this shouldn’t have to be the case

given the characteristics of the min (↓) operator.

Step 2 - Program Transformation

For convenience, a definition for remove is given here:

remove e [] = []

remove e (x : xs) = if (e == x) then xs else x : (remove e xs)

225

CHAPTER 9. CASE STUDIES 226

We should be able to create a function which combines the functionality of remove and fold (↓)
into a single interactive pass. That is to say a function which performs the same functionality as:

remove (fold (↓) xs) xs

The task we have is to remove the lowest value from the list. Where we are presented with

a list containing just one value, the result is trivial - that item must by definition be the lowest

value, so we return the empty list. For a list containing two or more values, we can compare the

first two values. The higher of the two we know cannot be the lowest item in the list, so we can

output it immediately. The lower of the two we put back into the as yet unprocessed portion of

the list and recurse.

minremove [x] = []

minremove (x : y : xs) = (x ↑ y) : minremove ((x ↓ y) : xs)

This function is interactive with respect to its input list - for each item consumed from the

input, an item is produced in the output list (with the obvious exception of the lowest item, which

is removed). It may be important to note that minremove is, however, not an exact equivalence of

our remove and fold(↓) based definition. The output of minremove may be in a slightly different

order, as a result of local minima. As an example:

xs = [3, 2, 4, 1]

remove (fold (↓) xs) xs = [3, 2, 4]

minremove xs = [3, 4, 2]

However we are still satisfying the criteria of our original specification - that we return a list

with the lowest item removed. The actual ordering is not important.

We should recall now that our objective is to extract the lowest value, and not simply discard

it. To this end we can provide a variant of the above function minremove which implements the

required functionality of minex. We have:

minex [x] = (x, [])

minex (x : y : xs) = (x ↑ y)⊕minex ((x ↓ y) : xs)

where z ⊕ (m, zs) = (m, z : zs)

A slight variation of the above employs a ‘lowest so far’ value, represented as an additional

parameter m, which may make for a slightly clearer definition:

minex (x : xs) = minex′ x xs

minex′ m [] = (m, [])

minex′ m (x : xs) = (m ↑ x) ⊕ minex′ (m ↓ x) xs

where y ⊕ (a, ys) = (a, y : ys)

226

CHAPTER 9. CASE STUDIES 227

Step 3 - Data Refinement

Given that our definition for minsort is based on unfoldr we can follow this pattern through to

our data refinement phase. Let us consider first refinement of the data types involved. Should we

wish to input and output a stream, we might appeal to sunfoldr:

sminsort :: bAc → bAc
sminsort xs = sunfoldr sminex snull xs

Should we wish instead to output the sorted values as a vector, we can instead appeal to

vunfoldr:

vminsort :: bAc → 〈A〉n
vminsort xs = vunfoldrn sminex snull xs

Here sminex is a refinement of minex which inputs and outputs streams. We have:

sminex :: bAc → (A, bAc)

Step 4 - Process Refinement

Let us consider a CSP definition for the component process SMINEX. Here we have a process

which inputs a stream on one conduit, and outputs on two conduits - one a stream, and another a

single item.

αSMINEX = {in :: bAc, outd :: A, outr :: bAc}

The values to be transmitted on conduits outd and outr correspond to the first and second

items respectively of the pair returned by sminex. So on conduit outd, the lowest item from the

input stream received on in should be produced. On outr all items but the lowest from the input

stream on in should be transmitted. This is depicted in Figure 9.2.

SMINEXxs- minremove xs-

?
fold (↓) xs

Figure 9.2: The process SMINEX.

Let us consider a CSP definition for our process SMINEX. This corresponds closely to our

final definition for minex given above. We have the following:

SMINEX = in.value ? m → X

µX •
in.eot ? any → outd ! m → outr.eot ! True → SKIP

|
in.value ? x → outr.value ! (m ↑ x); m := (m ↓ x); X

227

CHAPTER 9. CASE STUDIES 228

Our vector output process V MINSORT can then be created by composing together n instances

of this component process following the V UNFOLDR pattern. This is depicted in Figure 9.3.

[x1, x2, ..., xn] SMINEX
1

SMINEX
2

SMINEX
n−1

SMINEX
n

- - - - -. . .

? ? ? ?
out1 out2

. . .
outn−1 outn

Figure 9.3: The VMINSORT process.

Step 5 - Handel-C Implementation

macro proc SMINEX (in,outd,outr)
{

messagetype(outd) x,m;
Bool eot;
eot = False;
in.value ? m;
while (!eot)
{

prialt
{
case in.value ? x:

outr.value ! max(m,x);
m = min(m,x);
break;

case in.eot ? eot:
outd ! m;
outr.eot ! eot;
break;

}
}

}

Figure 9.4: The Handel-C definition of the process SMINEX.

A Handel-C implementation for SMINEX can follow directly from the CSP definition. This is

given in Figure 9.4.

228

CHAPTER 9. CASE STUDIES 229

9.2.3 Quick Sort

In a sequential setting, quick sort often delivers the best performance, in terms of both efficiency

and memory usage, and so is very widely used. Its behaviour follows a divide and conquer pattern.

At each step, we extract an item from the list (usually the head) to act as a ‘pivot item’. We can

then make a simple linear time pass to extract all the items lower than (or equal to) the pivot,

placing these into one group, as well as all the items higher than the pivot which are placed into

another group. Should both of these groups contain just zero or one item(s) each, we deem that

this list is already sorted. Should one or both groups contain two or more items, we need to then

recursively apply the quick sort algorithm.

Step 1 - Intitial Specification

In a functional setting, a definition is often given based on two list comprehensions.

qsort [] = []

qsort [x] = [x]

qsort (x : xs) = qsort [u|u ← xs, u ≤ x] ++ [x] ++ qsort [v|v ← xs, v > x]

Step 2 - Program Transformation

One slight variant on the above may provide small gains in efficiency where we are expecting

duplicates in the list. Here we group together all items equal to the pivot and place them in an

intermediate list which is, of course, sorted by definition.

qsort [] = []

qsort [x] = [x]

qsort (x : xs) = qsort [u|u ← xs, u < x] ++ [e|e ← xs, e = x] ++ qsort [v|v ← xs, v > x]

The list comprehensions used above can also be expressed with instances of filter:

qsort [] = []

qsort [x] = [x]

qsort (x : xs) = qsort (filter (< x) xs) ++ (filter (= x) xs) ++ qsort (filter (> x) xs)

Furthermore, we may also consider a definition in terms of our generic divide and conquer

higher order function (see Section 6.8).

qsort = dc id qistc qsplit qcombine

qsplit (x : xs) = [filter (≤ x) xs, [x], filter (> x) xs]

qcombine = fold (++)

qistc xs = (length xs) ≤ 1

That is to say, we determine that a given input corresponds to the trivial case if the length is less

than or equal to 1. Where an input is an instance of the trivial case, we return it unchanged (using

229

CHAPTER 9. CASE STUDIES 230

the function id), based on the observation that singleton or empty lists are sorted by definition.

The split function carries most of the interesting functionality of the quick sort algorithm. It is

here, in the function qsplit, that the pass is made through the list to split it into two sub lists, one

of items lower than the pivot and the other of items higher. The sub problems are then re-combined

using a simple fold with the concatenation operator.

Step 3 - Data Refinement

One might normally expect parallel implementations of quick sort to rely heavily on shared memory.

However, given the divide and conquer pattern introduced in Section 6.8, we may be able to consider

an implementation based on message passing, and therefore one which is truly scalable.

Let us consider the refinement of our components. First, and perhaps most importantly, we

have qsplit. In list terms we have the following type:

qsplit :: [A] → [[A]]

One possible refinement for this is a version which inputs a stream, and outputs a vector of

streams. Given the definition of qsplit we know that our output vector will contain exactly three

streams. We have:

svqsplit :: bAc → 〈bAc〉3

We can define this as follows:

svqsplit (x̂:xs) = 〈sfilter (≤ x) xs, bxc, sfilter (> x) xs〉3

Next we have the combine phase qcombine. Here we wish to provide a refinement which inputs

a vector and outputs a stream. Again, we know here that we are dealing with a vector of size

three. We have:

vsqcombine :: 〈bAc〉3 → bAc

Again we can provide a definition as follows:

vsqcombine = vfold3(+̂+)

Step 4 - Process Refinement

Let us consider a process refinement of the split function. Here we have the following alphabet:

αSV QSPLIT = {in :: bAc, out :: 〈bAc〉3}

We can combine the two filter expressions in the specification into a single pass, which will

work particularly well as the predicates are mutually exclusive.

230

CHAPTER 9. CASE STUDIES 231

SV QSPLIT = in.value ? x → out2.value ! x → out2.eot ! True →

µX •

in.eot ? any → out1.eot ! True →
out3.eot ! True →
SKIP

|
in.value ? y → if (y < x)

then out1.value ! y → X

else out3.value ! y → X

The quick sort algorithm is demonstrated in Figure 9.5.

- SV QSPLIT

¡
¡¡µ

-

@
@@R

SORT1

SORT2

SORT3

@
@@R-

¡
¡¡µ

V SQCOMBINE -

Figure 9.5: The core of the parallel Quick Sort process algorithm.

Step 5 - Handel-C Implementation

We shall not go the whole way to implementation in Handel-C for this case study; it is intended

more as an illustration of how divide and conquer style problems might be approached with this

methodology. Broadly though, a Handel-C implementation should be relatively straightforward -

a process implementing the functionality of SV QSPLIT could follow on almost directly from the

CSP definition given above.

9.2.4 Merge Sort

Merge sort hinges around an operator which takes in two sorted lists and merges them together

such that the resulting list is also sorted.

Step 1 - Initial Specification

The characteristic function in merge sort, merge, is usually defined recursively as follows:

231

CHAPTER 9. CASE STUDIES 232

merge xs [] = xs

merge [] ys = ys

merge (x : xs) (y : ys) = if x < y

then x : merge xs (y : ys)

else y : merge (x : xs) ys

A list containing only a single item is of course sorted by definition. Given that we need to

supply merge with already sorted lists, an obvious strategy is to convert the input list into a list

of singletons. The merge sort algorithm can therefore be implemented with a fold.

mergesort xs = fold merge (map (λx • [x]) xs)

Step 2 - Program Transformation

In this particular instance no real program transformation effort is required - the specification is

already in a form suitable for refinement.

Step 3 - Data Refinement

When we come to consider data refinement, we are presented with two main options. First a stream

based refinement:

smergesort = (sfold smerge) ◦ smap (λx • bxc)

Second, a vector based refinement:

vmergesort = (vfold smerge) ◦ vmap (λ x • bxc)

Step 4 - Process Refinement

We shall consider here our vector based refinement only. Given that the characteristic operator

here (fold) is associative, this is a candidate for a ”funnel” network of processes when we come to

consider implementation in parallel. This is depicted in Figure 9.6.

Step 5 - Handel-C Implementation

As with quick sdort, this is intended only as an illustrative example, and we shall not proceed the

whole way to implementation in Handel-C here.

232

CHAPTER 9. CASE STUDIES 233

? ? ? ? ? ? ? ?x1 x2 x3 x4 x5 x6 x7 x8

merge merge merge merge

? ? ? ?
sort [x1, x2] sort

[x3, x4]
sort

[x5, x6]
sort [x7, x8]

merge merge

??sort [x1, x2, x3, x4] sort [x5, x6, x7, x8]
merge

?
sort [x1, x2, x3, x4, x5, x6, x7, x8]

Figure 9.6: A funnel implementation of the merge sort algorithm.

9.3 Combinatorial Algorithms

We shall see that a number of algorithms, well suited to implementation through this methodology,

all fall into a similar pattern. Generally speaking, these can loosely be described as three stage

algorithms. The first stage takes the input and expands it into a intermediate structure. The

second stage processes the intermediate structure. The third stage then collapses and combines

this structure to return the result. In slightly more precise terms, we have the following pattern:

fold f ◦ g ◦ unfold h

The two case studies presented at in this section - minimum distance and distinct elements

have been published in [40]. Here they are given a fuller treatment, with more detail on the data

refinement phase, and on the final Handel-C implementation.

9.3.1 Minimum Distance

Given two lists of points in n-dimensional space, the minimum distance problem is one of finding

the distance between the two points which are closest together.

Step 1 - Initial Specification

An intuitive solution to such a problem is to calculate the Cartesian product of the two lists of

points, calculate the distance between each of the generated pairs, and simply find the lowest of

all these distances. We have the following:

md xs ys = (fold min ◦ map dist) (cp xs ys)

A simple function for calculating the Pythagorean distance between two points in n dimensional

space can be given as follows. In this particular instance we assume we are working in three

dimensions.

dist (x1, y1, z1) (x2, y2, z2) =
√

(x2− x1)2 + (y2− y1)2 + (z2− z1)2

233

CHAPTER 9. CASE STUDIES 234

Step 2 - Program Transformation

Our algorithm will have quadratic complexity, owing to the size of the intermediate structure

generated by cp. In order to achieve a linear implementation in parallel, we shall have to find

some means of dividing up this intermediate structure into sub-segments which can be processed

independently. This can be achieved with the function dcp (see Section 7.14). Substituting in the

definition for dcp we arrive at the following:

md xs ys = (fold min ◦ map dist ◦ fold (++)) (dcp xs ys)

Our goal of processing the intermediate results independently is only partially achieved however,

as almost all of the work is being done after the list of lists is concatenated. Thankfully, we can

appeal to our promotion laws to remedy this situation.

(fold min ◦ map dist ◦ fold (++)) (dcp xs ys) {def.}
= (fold min ◦ fold (++) ◦ map (map dist)) (dcp xs ys) {map promotion}
= (fold min ◦ map (fold min) ◦ map (map dist)) (dcp xs ys) {reduce promotion}

The resulting definition gives the scope we require for independent processing on the interme-

diate results. We have:

md xs ys = (fold min ◦ map (fold min) ◦ map (map dist)) (dcp xs ys)

Step 3 - Data Refinement

We will require a refinement of the distributed Cartesian product function with output which is

convenient for independent processing in parallel. See Section 7.14 for a discussion of the potential

alternatives. The two prime candidates in this setting are the vector of streams and the stream of

vectors, as these are both able to produce the quadratic sized output in linear time and with linear

processing resource requirements. Let us consider first the case of the vector of streams outputs.

If we refine our input list xs to a stream s (that is to say xs = absS s), and similarly our

other input list ys to a stream t (again, where ys = absS t), we can then present the RHS of our

function md as follows:

(fold min ◦ map (fold min) ◦ map (map dist)) (dcp (absS s) (absS t))

We have the following data refined version of dcp in this setting, as presented in Section 7.14.2:

svsdcpn :: bAc → bBc → 〈b(A, B)c〉n

Also in Section 7.14.2 we have the following property:

dcp (absS s) (absS t) = absV S (svsdcpn s t)

Substituting this into our definition for md we have:

234

CHAPTER 9. CASE STUDIES 235

(fold min ◦ map (fold min) ◦ map (map dist)) (absV S (svsdcpn s t))

We can of course move the abstraction function into the compositional part of our definition:

(fold min ◦ map (fold min) ◦ map (map dist) ◦ absV S) (svsdcpn s t)

From here on, we simply promote the expression absV S upwards, at each step using the relevant

data refinement identity. First, for map in the vector of streams setting (see Section 5.2.8) we have:

(fold min ◦ map (fold min) ◦ absV S ◦ vmapn (smap dist)) (svsdcpn s t)

Secondly, for fold in the vector of streams setting (see Section 5.3.5) we have:

(vfold min ◦ vmapn (fold min) ◦ vmapn (smap dist)) (svsdcpn s t)

Thus we arrive at our vector of streams based refinement for md, which we shall call vsmd:

vsmdn s t = (vfoldn min ◦ vmapn (sfold min) ◦ vmapn (smap dist)) (svsdcpn s t)

We can relate between this and our original definition as follows, given two streams s and t

where s is of length n:

md (absS s) (absS t) = vsmdn s t

Considering now the stream of vectors case, an analogous derivation to the above could be

produced, which would result in the following definition:

svmdn s t = (sfold min ◦ smap (vfoldn min) ◦ smap (vmapn dist)) (ssvdcpn s t)

Step 4 - Process Refinement

Let us consider refinement to processes of the data refined specification vsmdn. Almost all of

the functionality here can be taken from our higher order process library, requiring only trivial

implementations for the refinements of the functions min and dist. Functional composition in the

specification will correspond to process piping in the implementation.

We may wish at this point to decide on specific interpretations for the generic uses of fold

derivatives used in our specification. As the characteristic operator - min - is associative, either a

left or right directed fold will suit our requirements. Assuming the input size n is non zero, then

we are at liberty to use a refinement of either foldr1 or foldl1. There are two instances of fold in

our specification for vsmdn - one in a stream setting, and the other in a vector setting. Where we

are required to implement the functionality of fold in a stream setting, we shall use a refinement

235

CHAPTER 9. CASE STUDIES 236

of foldl1, as this can be implemented without buffering (see Section 5.3.1). In the vector setting

the decision is arbitrary, so we shall again opt for a refinement of the left directed variant, foldl1.

The implementation can now be constructed, giving us the following network:

V SMDn(xs) =

SV SDCPn(xs) Àn V MAPn(SMAP (dist)) Àn V MAPn(SFOLDL1(min)) Àn V FOLDL1n(min)

Here n represents the length of list xs. The process V SMDn depicted in Figure 9.7.

SV SDCPn(xs)

V MAPn

(SMAP (dist))

V MAPn

(SFOLDL1(min))

V FOLDL1n

(min)

ys ys ys ys
PR(x1) PR(x2) PR(xn)- - - -. . .

? ? ?
SMAP
(dist)

SMAP
(dist)

SMAP
(dist)

? ? ?

(pair x1) ∗ ys (pair x2) ∗ ys (pair xn) ∗ ys

SFOLDL1
(min)

SFOLDL1
(min)

SFOLDL1
(min)

? ?

MIN MIN

(dist x1) ∗ ys (dist x2) ∗ ys (dist xn) ∗ ys

- - - -. . .

. . .

. . .

(↓)/ (dist x1) ∗ ys (↓)/ (dist x2) ∗ ys (↓)/ (dist xn) ∗ ys

result

Figure 9.7: A network to solve the minimum distance problem for the lists xs and ys

Step 5 - Handel-C Implementation

The Handel-C implementation can flow naturally from the CSP definition. This is given in Fig-

ure 9.8.

macro proc MINDIST (n,streamin,itemout,xs)
{

Vector (Stream (Item (CoordPair)), vectora, n);
Vector (Stream (Item (Value)), vectorb, n);
Vector (Item (Value), vectorc, n);

par
{

SVSDCP (n,streamin,vectora,xs);
VMAP (n,vectora,vectorb,SMAPDIST);
VMAP (n,vectorb,vectorc,SFOLDMIN);
VFOLDL1 (n,vectorc,itemout,MIN);

}
}

Figure 9.8: Handel-C definition for the minimum distance problem.

236

CHAPTER 9. CASE STUDIES 237

Results

Results for the minimum distance network implemented on a Xilinx XCV2000e are given in Ta-

ble 9.1. In these results we make the assumption here that the length of time each cycle takes

does not change significantly with respect to the problem size. Sequentially this is a quadratic

algorithm, but, as these results demonstrate, our parallel hardware implementation is linear, both

in resource usage and execution time.

Indeed the cycle times are very regular - we have, for a problem of size n, a cycle time in each

case of precisely 5n + 6. The slice usage is a little less regular, but follows roughly a pattern of

about 250n slices. To this end, we may hope to be able to implement the network for a problem

size of up to around 100 on an XCV2000e device.

Obviously, a larger device (or composition of multiple devices) would allow larger problem sizes

to be dealt with. Alternatively, it may be possible to increase the number of items we can deal with

on a single device through some optimisation techniques. This optimisation does not necessarily

require us to resort to ad-hoc ‘tweaking’. We can instead return to our specification and consider

alternative refinements in a formal manner.

For example, we may consider condensing together the two V MAP stages into a single stage,

which could be proved as an equivalent with some simple map transformation laws. Although

this variant implementation would be slightly less efficient in terms of computation time, it would

however have a lower overhead in terms of communication, and therefore is likely to have a lower

resource requirement.

items slices used (%) cycles

5 1, 323 6% 31

10 2, 561 13% 56

15 3, 817 19% 81

20 5, 066 26% 106

25 6, 295 32% 131

30 7, 567 39% 156

Table 9.1: Results for the minimum distance network.

237

CHAPTER 9. CASE STUDIES 238

9.3.2 Distinct Elements

Given a list of items, the distinct elements problem is one of determining whether or not the list

is free of duplicates, that is to say, no item in the list is equal to any other item.

Step 1 - Initial Specification

Instinctively we might provide a recursive algorithm to solve this problem. An empty list is distinct

by definition - as it contains no items, it therefore contains no duplicates. For a non-empty list, we

can take the first item and compare it to the remainder to determine whether or not there are any

repetitions of that particular item. If there are not, we may then proceed to check the remainder

in the same way, recursively. A typical recursive definition of this form can be given as follows:

distinct [] = True

distinct (x : xs) = (and (map (6= x) xs)) ∧ (distinct xs)

Step 2 - Program Transformation

A little inspection of this definition reveals that we are actually operating on all of the final segments

of our list. For each final segment we are attempting to calculate whether or not the first element

differs from the subsequent elements. Thus what we are doing is in effect equivalent to the following

definition:

distinct = and ◦ map noteq ◦ tails+

Given a function noteq which takes a list and dictates if the first item is different to all the

others.
noteq = and ◦ diff

diff (x : xs) = map (6= x) xs

Let us expand the definition of noteq here to provide scope for applying the map distributivity

law:

distinct = and ◦ map (and ◦ diff) ◦ tails+

This allows us to give a slight redefinition of distinct, which better exposes the separate process-

ing phases.

distinct = and ◦ map and ◦ map diff ◦ tails+

Step 3 - Data Refinement

Let us now consider refining this specification to derive our implementation. We have an algorithm

of quadratic complexity, resulting from the size of the intermediate structure created by tails. We

would like to arrive at a linear implementation in parallel, requiring O(n) processing resources. We

238

CHAPTER 9. CASE STUDIES 239

therefore require each of the final segments generated by tails to be processed independently in

our implementation. Let us assume our data will arrive initially as a stream. Our refinement of

tails+ will be responsible for taking in this stream and producing a vector of streams as output,

with each stream in the vector representing a final segment in the list. Within each final segment

we shall employ stream refinements of our functions. We then arrive at the following definition

after our data refinement step.

vandn ◦ vmapn sand ◦ vmapn sdiff ◦ svstails+
n

Expanding our definitions for vandn and sand will allow us to insert fold derivatives in their

place.

vfoldn(∧) ◦ vmapn (sfold(∧)) ◦ vmapn sdiff ◦ svstails+
n

As with our previous case study, the operator here (∧) is associative, and we can assume our

list to be non empty. So the decision as to which particular interpretation of fold to opt for is

fairly arbitrary. For example:

(vfoldln(∧)) True ◦ vmapn (sfoldl(∧) True) ◦ vmapn sdiff ◦ svstails+
n

Step 4 - Process Refinement

As regards process refinement, almost all of the functionality required to implement this can be

taken from our process library. The only piece of bespoke functionality is in the refinement of the

diff function. The definition of such a process is, however, fairly trivial:

SDIFF = in.value ? x → SMAP (6= x)

The above definition can therefore be refined quite straightforwardly to the following network:

SV STAILS+
n Àn V MAPn(SDIFF) Àn V MAPn(SFOLDL(∧)) Àn V FOLDLn(∧)

where n is the length of the input list. The results can be seen in Figure 9.9.

Step 5 - Handel-C Implementation

This is given in Figure 9.10.

Results

Results for the distinct elements network implemented on a Xilinx XCV2000e are given in Table 9.2.

Again we make the assumption here that the length of time each cycle takes does not change

significantly with respect to the problem size.

239

CHAPTER 9. CASE STUDIES 240

SV STAILS+
n

V MAPn

(SDIFF)

V MAPn

(SFOLDL(∧))

V FOLDLn

(∧)

[x1..xn] [x2..xn] [x3..xn] [xn]

TL TL TL- - - -. . .

? ? ?
[x1..xn] [x2..xn] [xn]

SDIFF SDIFF SDIFF

? ? ?
SFOLDL
(∧, T rue)

SFOLDL
(∧, T rue)

SFOLDL
(∧, T rue)

? ? ?
True

AND AND AND- - - - -. . .

. . .

. . .

r1 r2 rn

r1 (r1 ∧ r2) result

Figure 9.9: A network to solve the distinct elements problem for the list xs

macro proc DISTINCT (n,streamin,streamout)
{

VectorOfStreams (Item(Value),vectora,n);
VectorOfStreams (Item(Bool), vectorb,n);
Vector (Item(Bool), vectorc,n);

par
{

SVSTAILSP (n,streamin,vectora);
VMAP (n,vectora,vectorb,SDIFF);
VMAP (n,vectorb,vectorc,SFOLDAND);
VFOLDL (n,vectorc,streamout,AND,True);

}
}

Figure 9.10: Handel-C definition for the distinct elements problem.

As with the minimum distance problem, sequentially we have a quadratic algorithm, but, as

these results demonstrate, our parallel hardware implementation has both linear resource usage

and execution time. Again the cycle times are very regular - we have, for a problem of size n, a

cycle time in each case of precisely 5n + 4. As before, the slice usage is a slightly less regular, but

follows roughly a pattern of about 90n slices. To this end, we may hope to be able to implement the

network for a problem size of just over 200 on an XCV2000e device. As before, some optimisation

may allow us to increase this figure, and larger/multiple devices would of course allow for larger

problem sizes to be dealt with.

240

CHAPTER 9. CASE STUDIES 241

items slices used (%) cycles

5 492 2% 29

10 911 4% 54

15 1, 345 7% 79

20 1, 770 9% 104

25 2, 200 11% 129

30 2, 622 13% 154

40 3, 467 18% 204

60 5, 216 27% 304

80 6, 944 36% 404

100 8, 679 45% 504

120 10, 410 54% 604

Table 9.2: Results for the distinct elements problem.

9.4 A JPEG Decoder

A version of this case study has been appeared in [5]. An extended version is given here, with

greater emphasis on the concepts such as data refinement which are central to this work.

The JPEG format is widely accepted as the de facto standard for encoding of continuous tone

real world images, and is particularly well suited to photographs. It is probably the most widely

deployed image format on the internet, and is also now finding many more areas of application

besides the PC.

The rise in popularity of digital photography is one such example which has made the pro-

liferation of JPEG images even more pronounced. JPEG was the natural choice for the image

format of digital cameras, and almost all such devices implement JPEG encoders and/or decoders

in some form. As a predictable consequence of the increased interest in digital photography there

has also been a continually increasing set of expectations in terms of image quality. This mani-

fests itself most evidently in the form of a constant demand for higher resolution images. Certain

problems are therefore presented to manufacturers of such devices. As one would expect, higher

resolution images require more sophisticated technology to manage them, and particularly more

time to encode and decode them. Many consumers have noticed that upon ‘upgrading’ to a higher

specification model, they have actually ended up with a device which is slower than their previous

one.

These issues are not confined to the digital camera industry. Many other handheld devices now

deal with JPEG images and are subject to similar increasing requirements and expectations. In

more ‘traditional’ fields of computing there are also similar issues. Given that more users have

241

CHAPTER 9. CASE STUDIES 242

access to high speed internet connections and improved quality display devices, they will naturally

also expect to deal with increasingly higher resolution images. This puts an obvious strain on

processing resources, one which, in certain areas, the increase in processor speeds may not be able

to keep up with. Fields such as astronomy and medicine often rely on extremely high resolution

images, where the speed with which they can be processed may often be an important issue.

To summarise, despite the JPEG format having been so widely implemented and deployed,

there is still good cause for considering alternative strategies for implementation which may provide

improved efficiency. In this section we attempt to prove that our methodology is ideally suited to

the task of deriving such an implementation.

Algorithm Design

One of the problems faced when attempting the task of deriving a novel implementation of the

JPEG specification is that developers are typically (and quite naturally) very reluctant to re-

invent the wheel That is to say, given the widespread use of JPEG and the length of time for which

it has been established, there exists already a number of tried and tested libraries. Given the

amount of effort and expertise that has been poured into these libraries over the years the average

developer would conclude, quite rightly, that there is little scope for improvement, at least, within

a traditional software setting. However, whereas the patterns of computation used in such libraries

are highly efficient for the traditional computing architectures at which they were targeted, we

should not fall into the trap of using these implementations as specifications when starting out on

a new implementation in a different setting. Imperative languages, as we have already argued, do

not provide a good framework for reasoning about, and transforming algorithms. So, as always,

we shall begin with a functional specification of a JPEG decoder.

We shall focus our efforts on a decoder for JPEG’s baseline DCT method of compression. This

is almost certainly the most commonly used method within the JPEG set of standards.

We shall require the use of restart markers in our compressed data. A JPEG decoder must

maintain a set of predictors. The predictors will be modified each time a unit of data is decoded, and

their values will affect the decoding of each unit. As such, for every single unit in the compressed

file, we require that the previous unit has been at least partially decoded before it in turn can be

decoded. This makes for a largely sequential decoding process. Thankfully, the JPEG standard

recognises applications in which JPEG images might be communicated over unreliable media, and

as such, data may have been lost part way through transmission. To this end, the standard includes

the definition of restart markers. Whenever one of these markers is encountered, the predictors

can be safely reset. This has the effect of defining a number of sections within the compressed data

that can be decoded completely independently of each other.

It is important to clearly consider the hierarchy within a compressed JPEG file, when con-

sidering writing the specification for a decoder. To begin with we have a file. This can be split

242

CHAPTER 9. CASE STUDIES 243

into two areas, the headers and the compressed scan data. The headers contain information about

the compressed data (size, format and so on) as well as tables for dequantization and Huffman

decoding.

Where restart markers are used, the scan can be decomposed into a number of independent

sections which we shall call intervals. An interval can be further decomposed into one or more

minimum coding units (MCUs). The number of MCUs per interval is defined in the headers. The

MCU is a collection of units. Each unit, when fully decompressed, will form an 8 × 8 matrix of

samples for a given component (usually one of Y , Cb or Cr for colour images). Generally, the

chrominance components will be downsampled to achieve better compression. A typical scheme

has an MCU representing a 16× 16 block of pixels in the fully decoded output image. Within this,

there will have been a unique Y (luminance) value for every pixel. However, each chrominance

value will be shared by a 2×2 pixel block. As such, an MCU in this scheme will contain four units

of Y samples, followed by one of Cb samples, and one of Cr samples.

Step 1 - Initial Specification

We may find the following type definitions useful. A unit is an 8× 8 matrix of coefficients (before

transformation) or samples (after transformation). An MCU is a list of units. These types may

therefore be defined as follows:

type UnitRow = [Int]

type Unit = [UnitRow]

type MCU = [Unit]

Now, to consider the functions that will comprise our decoder. At the highest level we require

a function that will take in a list of compressed bytes representing the entire file, and will return

an uncompressed image.

decodeJpeg :: [Byte] → Image

decodeJpeg data = decodeScan hdrInfo scanData

where (scanData, hdrInfo) = decodeHeaders data

An Image here can be considered as a simple two dimensional array of pixel values. This

definition relies on two auxiliary definitions. The first decodes the headers in the data, and returns

both a HeaderInfo object and a list of the remaining data in the file, following the headers.

decodeHeaders :: [Byte] → ([Byte],HeaderInfo)

The exact definition of decodeHeaders and the HeaderInfo type will not be shown in full here

due to lack of space. Broadly, the header information should include all the numeric parameters

and structures required for decoding. The second function, decodeScan, is where the bulk of the

decoding effort takes place.

243

CHAPTER 9. CASE STUDIES 244

decodeScan :: HeaderInfo → [Byte] → Image

decodeScan hdrInfo = composeImage hdrInfo ◦
map (decodeInterval hdrInfo) ◦
readIntervals

This function is a composition of three stages. In the first, we use the function readIntervals to

split the compressed scan data into a list of intervals which can be decoded independently of each

other. Next, we map the function decodeInterval to each interval in the list of decoded sections

within the image. Finally we apply composeImage to compose these sections together, a function

which we shall keep deliberately vague.

The function readIntervals is simple, but crucial in terms of scope for parallelism, as we shall

see later. It reads through the input list of bytes, and splits it into sublists based on the occurrence

of restart markers. A restart marker will be a single byte with value ff in hex, followed by a value

from d0 up to d7. The encoder will ‘pad’ any byte values of ff naturally occurring in the compressed

data with a single zero byte to ensure they are never confused with a restart marker. This means

that readIntervals can safely split up the compressed data without any greater level of detail than

simply examining individual byte values. As such, this task should be very fast.

readIntervals :: [Byte] → [[Byte]]

The next function, decodeInterval, will take a list of compressed bytes that form a single

interval, and return a list of totally decompressed MCUs that, when reconstructed, will form the

corresponding section of the output image. The definition is as follows:

decodeInterval :: HeaderInfo → [Byte] → [MCU]

decodeInterval hdrInfo = map (transformMCU) ◦
intervalToMCUs hdrInfo ◦
bytesToBits

Here again we have a composition of three stages. Firstly, given that Huffman decoding works

at the bit rather than byte level (due to the use of variable length codes), we employ bytesToBits

to transform our input list of bytes into a list of bits. Next we apply intervalToMCUs which

should supply us with a list of MCUs, each, at this stage, containing untransformed coefficients.

Finally we map transformMCU , such that each MCU is transformed from a list of matrices of

coefficients to a list of matrices of samples (Y , Cb, and Cr values). The type of intervalToMCUs

is as follows:

intervalToMCUs :: HeaderInfo → [Bit] → [MCU]

We shall have to brush somewhat briefly over the goings on inside this function due to lack of

space. Suffice to say we shall have a repeated application of a function which reads in an MCU,

244

CHAPTER 9. CASE STUDIES 245

Figure 9.11: A demonstration of how a JPEG image can be split into intervals.

and maintains the state of the predictors between calls. Reading an MCU is in turn a repeated

application of a function which reads in units.

Let us return now to the function transformMCU . This takes an MCU, containing units of

untransformed coefficients, and returns an MCU containing units of fully decoded sample data. It

maps the function transformUnit to each unit in the MCU.

transformMCU :: HeaderInfo → MCU → MCU

transformMCU hdrInfo = map transformUnit

The transformUnit function performs the familiar stages of transforming an 8 × 8 unit of

coefficients into an 8× 8 unit of output sample values. Firstly it performs zig-zag reordering, then

dequantization (making use of the appropriate quantization table in the HeaderInfo structure),

and finally applies the inverse discrete cosine transform.

transformUnit :: HeaderInfo → Unit → Unit

transformUnit hdrInfo = idct ◦ dequantize hdrInfo ◦ zigzag

Step 2 - Program Transformation

The majority of interesting functionality in the specification is concealed within the function

decodeInterval. Given that an MCU is a list of units, and the number of units per MCU can

be derived from the header information, it should be straightforward to flatten a list of MCUs into

units and vice verse. This can be achieved with the functions unitsToMCUs and MCUsToUnits.

Thus, with a little simple program transformation, we can arrive at the following definition:

245

CHAPTER 9. CASE STUDIES 246

decodeInterval′ hdrInfo

= unitsToMCUs hdrInfo ◦
map idct ◦ map (dequantize hdrInfo) ◦ map zigzag ◦
MCUsToUnits ◦ intervalToMCUs hdrInfo ◦ bytesToBits

We may find the following ‘shortcut’ useful:

intervalToUnits hdrInfo

= MCUsToUnits ◦ intervalToMCUs hdrInfo ◦ bytesToBits

Allowing us to instead write:

decodeInterval′ hdrInfo

= unitsToMCUs hdrInfo ◦
map idct ◦ map (dequantize hdrInfo) ◦ map zigzag ◦
(intervalToUnits hdrInfo)

Step 3 - Data Refinement

For the algorithm as a whole, we wish to be able to process each interval of the image independently

in parallel. To this end, we aim to refine readIntervals to some form which can output a vector.

We can then apply our refinement of decodeInterval, using a vector interpretation of map, to each

interval. Finally we shall also require some refinement for composeImage which accepts input as

a vector. Broadly, we have the following specification for our vector refined version of decodeScan:

vdecodeScan hdrInfo = vcomposeImage hdrInfo ◦
vmap (decodeInterval′ hdrInfo) ◦
vreadIntervals

Looking now at decodeInterval, we should determine the communication method that will be

used between subsequent stages in this part of the algorithm. Let us consider a refinement which

relies on streams at the top level. A data refined version of intervalToUnits could produce a

stream of units, which then passes through the usual zig-zag, dequantization and IDCT steps, each

stage both inputtting and outputting a stream of units. We have:

sdecodeInterval hdrInfo

= sunitsToMCUs hdrInfo ◦
smap idct ◦ smap (dequantize hdrInfo) ◦ smap zigzag ◦
(sintervalToUnits hdrInfo)

At a lower level than this we need to consider how each individual unit is to be communicated.

Recall from earlier that each unit is an 8 × 8 block of integer values. This is represented in the

specification as a list of lists. A number of option present themselves to us for how this could be

246

CHAPTER 9. CASE STUDIES 247

refined. A vector of vectors would effectively allow us to communicate all 64 values in a single step,

but would require a large degree of parallelism. A stream of streams, at the other extreme, would

require 64 steps to communicate the whole unit, but require no parallelism at all. Between the

two we have the vector of streams, and the stream of vectors, each of which could communicate

the unit in eight steps, but require eight independent processing resources. Let us go for one of

the two in the middle - and, given the very regular dimensions of the structure to communicate,

we shall employ the stream of vectors.

So we shall require a suite of data refined functions which work in terms of streams of vectors.

Taking for example idct, we have the following data refinement:

svidct :: b〈Int〉8c → b〈Int〉8c

Given these we can provide the following definition for sdecodeInterval:

sdecodeInterval hdrInfo

= sunitsToMCUs hdrInfo ◦
smap svidct ◦ smap (svdequantize hdrInfo) ◦ smap svzigzag ◦
(sintervalToUnits hdrInfo)

Step 4 - Process Refinement

Concentrating just on the task of decoding a single interval, this compositional form for sdecodeInterval

is now well suited to process refinement. We can refine this to the following network of CSP

processes:

SDECODEINTERV AL

= SINTERV ALSTOUNITS À
SMAP (SV ZIGZAG) À
SMAP (SV DEQUANT) À
SMAP (SV IDCT) À
SUNITSTOMCUS

We can specify process alphabets to reflect the communication types between stages, for exam-

ple:

αSV IDCT :: {in :: b〈Int〉8c, out :: b〈Int〉8c}

Considering the algorithm as a whole, we have:

V DECODESCANn

= V READINTERV ALS Àn

V MAP (SDECODEINTERV AL) À
V COMPOSEIMAGE

The resulting network is depicted in Figure 9.12.

247

CHAPTER 9. CASE STUDIES 248

- V READINTERV ALS

? ? ?
SINTERV AL

TOUNITS
SINTERV AL

TOUNITS
SINTERV AL

TOUNITS

? ? ?
SMAP

(SV ZIGZAG)
SMAP

(SV ZIGZAG)
SMAP

(SV ZIGZAG)

? ? ?
SMAP

(SV DEQUAN)
SMAP

(SV DEQUAN)
SMAP

(SV DEQUAN)

? ? ?
SMAP

(SV IDCT)
SMAP

(SV IDCT)
SMAP

(SV IDCT)

? ? ?
SUINTS
TOMCUS

SUINTS
TOMCUS

SUINTS
TOMCUS

? ? ?

V COMPOSEIMAGE

. . .

. . .

. . .

. . .

. . .

Figure 9.12: The JPEG decoder process network.

Step 5 - Handel-C Implementation

The Handel-C implementation SDECODEINTERVAL is given in Figure 9.13 - this can follow naturally

from the CSP definition for the SDECODEINTERV AL given above. Given this definition for

SDECODEINTERVAL, we can construct our implementation for the process V DECODESCAN . The

Handel-C implementation for VDECODESCAN is given in Figure 9.14.

Results

The resulting design was too large to be implemented on the available device (a Xilinx XCV2000e),

despite some concerted efforts in optimisation. Even with an effectively non-parallel version (i.e.

the number of intervals which can be processed concurrently reduced to just one), the place and

route tools were never able to successfully map the full design. The individual components of

the JPEG decoder - particularly the IDCT - result in significant resource usage. At best, the

requirements were at about 125% of the available resources. It seems likely therefore that using a

device twice as big as the XCV2000e, that the design could be implemented, and there may even

be room for some parallelism.

Given more time, it may be possible to look at some alternative approaches here, which may

allow this design to fit, even on this smaller device. It may be possible to blend VHDL with Handel-

248

CHAPTER 9. CASE STUDIES 249

macro proc SDECODEINTERVAL (in,out)
{

StreamOfUnits smida, smidb, smidc, smidd;

par
{

SINTERVALTOUNITS (in,smida);
SMAP (smida,smidb,SVZIGZAG);
SMAP (smidb,smidc,SVDEQUANTIZE);
SMAP (smidc,smidd,SVIDCT);
SUNITSTOMCUS (smidd,out);

}
}

Figure 9.13: The SDECODEINTERVAL process.

macro proc VDECODESCAN (in,out)
{

VectorOfStreams (n,Byte) vmida;
StreamOfVectors (n,Byte) vmidb;
par
{

VREADINTERVALS (n,in,vmida);
VMAP(n,vmida,vmidb,SDECODEINTERVAL);
VCOMPOSEIMAGE (vmidb, out);

}
}

Figure 9.14: The VDECODESCAN process.

C, for example. It is likely that a VHDL implementation can replace some of the functionality

currently implemented in Handel-C with lower overheads in terms of resource usage. This is, of

course, at the price of adding complexity into the design process. Having said that, components

such as the IDCT have been widely researched in reconfigurable logic, and a number of VHDL

implementations exist. This may prove an interesting area of future work - looking at how the

design can be composed of modules implemented in more than one language.

Another approach may be to look at a hybrid implementation - with some of the functionality

performed by the FPGA, and some implemented more conventionally in software. This also sug-

gests an interesting area of further work in looking at how this methodology can be expanded to

incorporate such hybrid systems whilst still ensuring correctness.

Other Implementations

Designs for JPEG decoders have been successfully implemented elsewhere in reconfigurable logic

on devices of a smiliar size - see for example [35]. This particular implementation was achieved

purely using VHDL, and this highlights the overhead introduced by implementation using our

methodology - particularly as we rely on Handel-C. In the section on future work we look at

249

CHAPTER 9. CASE STUDIES 250

how targeting other implementation languages with our methodology may help to address this

issue. As noted previously, the sacrifice made in resorting to VHDL is that it introduces significant

complexity and, in the absence of a formal development framework, makes asserting the correctness

of the resulting implementation far more difficult.

250

CHAPTER 9. CASE STUDIES 251

9.5 DNA Processing

This case study was originally presented in [6]. Here we introduce an extended version of that work,

taking the specification from there and including it in a fuller derivation. We add the notions of

data refinement introduced in this work, and also add a full implementation in Handel-C.

The field of genetics has blossomed over the last few years, particularly as a result of the high

profile Human Genome Project. To this end there is now a large and ever increasing availability of

DNA information in digital formats. However, despite the ready availability of this information,

the task of processing and interpreting it is by no means trivial.

To begin with, the large volumes of data to be dealt with need to be taken into account. Humans

have 23 different types of chromosome, which as a diploid species is doubled to 46 (one from each

parent). These chromosomes range in size from 46 million to over 240 million bases. Given that

each base is one of four possible combinations, we are looking at something in the region of 90

Megabytes of data for even the smallest of chromosomes. Add to this the potential for experiments

and investigations in genetic science to involve thousands of individuals and we are dealing with a

very large scale of data indeed.

If the task of interpretation merely involved conventional (i.e. exact) string matching then

such volumes of data may seem relatively manageable. The field of string matching has been

extensively studied and highly efficient linear algorithms exist in the case that only exact matches

are required [51, 25]. However, such exact matches would often not be of great use to genetic

scientists. Sequences of DNA are subject to change through reproduction, and portions of a

sequence may be deleted, inserted or mutated over time. As such the operation required is closer to

that of the edit distance [90] or longest common subsequence. The edit distance is a measurement of

the amount of operations (insertions, deletions and substitutions) required to translate one string

into another. The longest common subsequence can be seen as a special case of edit distance,

wherein substitutions are not allowed.

Step 1 - Initial Specification

Let us briefly consider the issue of representation. We can represent a DNA sequence as a string

of characters, where each character represents a base. There are four possible bases - A, C, G and

T. In Haskell we might construct a simple data type to model this, as follows:

data Base = A | C | G | T

type Sequence = [Base]

Let us consider the problem of attempting to find all matching sub-segments of two lists. The

task of producing all possible sub-segments of a list is a costly one. For a list of size n, there are

O(n2) possible sub-segments (see Section 7.16). Were we to apply a brute force approach here,

taking the Cartesian product (see Section 7.14) of the two lists of sub-segments to compare each

251

CHAPTER 9. CASE STUDIES 252

and every one, we would be looking at an unmanageable O(n4) algorithm. We have something

along the lines of the following:

ams xs ys = map (uncurry (=)) (cp (segments+ xs) (segments+ ys))

Thankfully much of that effort would of course be redundant. Many of the segments of a list

are naturally prefixes of other segments of that list. When comparing two lists s and t of equal

length, should we determine they are not equal in value, then we can also assert that for any other

two lists a and b that (s ++ a) 6= (t ++ b). This allows us to ‘cut short’ a lot of unnecessary

comparisons. This redundancy should become particularly apparent if we consider the definition

for segments+ (see Section 7.16 for more details):

segments+ = fold (++) ◦map inits+ ◦ tails+

Here we are mapping inits+ to the result of tails+ (see Section 7.12). That is to say for each

final segment of the list we compute every initial segment. Recalling for a moment the definition

of inits+, we have:

inits+ [x1, x2, . . . , xn] = [[x1], [x1, x2], . . . , [x1, x2, . . . , xn−1], [x1, x2, . . . , xn]]

Where we are attempting to match the results of inits+ xs with some sequence ys it should

be clear that this task can be performed in a single linear time pass. Each list in the output of

inits+ xs contains the previous list as a prefix, and any comparison effort need not be duplicated.

So, to illustrate, our ‘brute force’ approach for finding all initial segments of xs which match some

sequence ys would be as follows:

ami xs ys = map (= ys) inits+ xs

The above would require quadratic time. However, we can achieve the same result with this

simple linear time recursive definition:

ami [] ys = []

ami (x : xs) [] = map (const False) (x : xs)

ami (x : xs) (y : ys) = if (x = y)

then True : (ami xs ys)

else map (const False) (x : xs)

The output of this function will be a list of Booleans, of length n (the length of xs). The first

k values will be True (where k is in the range 0 to n), and the remaining (n − k) values will be

False. The regular nature of this list suggests that it may be more convenient to simply return the

value k, which is in effect the length of the longest common prefix. We can define such a function,

llcp, in terms of ami by simply summing the list - counting all True values as one, and all False

values as zero:

252

CHAPTER 9. CASE STUDIES 253

llcp xs ys = foldr (+) 0 (map f (ami xs ys))

where f b = if b then 1 else 0

Alternatively, to produce a ‘stand alone’ definition, we have (as seen in [6]):

llcp [] ys = 0

llcp xs [] = 0

llcp (x : xs) (y : ys) = if (x = y)

then 1 + (llcp xs ys)

else 0

We can construct a definition of our previous function ami in terms of llcp, should we still

require output as a list of Booleans. We have:

ami xs ys = take k (repeat True) ++ take (n-k) (repeat False)

where k = llcp xs ys

n = length xs

Given llcp we can construct a variant of our original definition which gives us the lengths of all

maximal common subsegments. We have:

lmcsa s t = map (uncurry llcp) (cp (tails+ s) (tails+ t))

Alternatively we may wish to replace cp with a list comprehension, which might provide for

slightly easier reading:

lmcsa s t = [llcp a b | a ← tails+ s, b ← tails+ t]

Step 2 - Program Transformation

Our function lmcsa producea the results as a single list, whereas a matrix may well be of more use

to us. Using the laws of list comprehension (see Section 7.6), particularly {LC7}, we can transform

the above to the following:

lmcsa s t = (fold (++) ◦ transpose) [[llcp a b | a ← tails+ s] | b ← tails+ t]

We can do away with the fold and transpose here, to give us just the following. This gives us

the same results, but simply in a different order and structure.

lmcsb s t = [[llcp a b | a ← tails+ s] | b ← tails+ t]

The results obtained from this function, applied to the test sequences s = ATCCATGTCATC and

t = CTATCTCATCG, are shown in Figure 9.15.

253

CHAPTER 9. CASE STUDIES 254

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

A T C C A T G T C A T C

t1 C 0 0 1 1 0 0 0 0 1 0 0 1
t2 T 0 1 0 0 0 1 0 1 0 0 1 0
t3 A 3 0 0 0 2 0 0 0 0 3 0 0
t4 T 0 2 0 0 0 1 0 2 0 0 2 0
t5 C 0 0 1 1 0 0 0 0 1 0 0 1
t6 T 0 2 0 0 0 1 0 5 0 0 2 0
t7 C 0 0 1 3 0 0 0 0 4 0 0 1
t8 A 3 0 0 0 2 0 0 0 0 3 0 0
t9 T 0 2 0 0 0 1 0 2 0 0 2 0
t10 C 0 0 1 1 0 0 0 0 1 0 0 1
t11 G 0 0 0 0 0 0 1 0 0 0 0 0

Figure 9.15: The matrix output by the function lmcsb.

Let us take a moment to consider how the matrix depicted in Figure 9.15 should be interpreted.

If the sequence s is of length n and t is of length m, then we have indices (i, j) running from (1, 1)

in the top left hand corner of the matrix to (n,m) in the bottom right hand corner. Each column

i represents the ith element of (tails+ s) compared with each element of (tails+ t). Similarly each

row j represents the jth element of (tails+ t) compared with each element of (tails+ s). At a given

index of (i, j), a value of k represents the result of llcp applied to the relevant final segments from s

and t at that point. In other words a value k at (i, j) means the next k items, from the ith element

in s, and the jth element in t, are equal. The longest common subsequence begins in the matrix

at position (8, 6) and has a length of five. This is the sequence TCATC.

We are of course at liberty to re-arrange our output matrix into whichever form suits us best.

See Section 7.15 for a selection of matrix transformation functions such as flipping, rotating and

so on. One alternative format for our matrix would be the result of lmcsb rotated through 180

degrees. We have:

lmcsc xs ys = rotate180 [[llcp x y | x ← tails+ xs] | y ← tails+ ys]

Given the definition for rotate180 (see Section 7.15) we can substitute the above for an alter-

native definition, using fins+ instead of tails+:

lmcsc xs ys = rotate180 [[llcp x y | x ← tails+ xs] | y ← tails+ ys]

= (fliph ◦ flipv) [[llcp x y | x ← tails+ xs] | y ← tails+ ys]

= (map reverse ◦ reverse) [[llcp x y | x ← tails+ xs] | y ← tails+ ys]

= map reverse [[llcp x y | x ← tails+ xs] | y ← tails+ (reverse ys)]

= [[llcp x y | x ← tails+ (reverse xs)] | y ← tails+ (reverse ys)]

= [[llcp x y | x ← fins+ xs] | y ← fins+ ys]

We now have a definition in a similar form to that given for lmcs in [6]. Let us consider the

output of our new variant lmcsc applied again to the sequences s = ATCCATGTCATC and t =

254

CHAPTER 9. CASE STUDIES 255

CTATCTCATCG. The resulting matrix is given in Figure 9.16. Note that the labels used on the table

are the sequences in reverse.

s12 s11 s10 s9 s8 s6 s6 s5 s4 s3 s2 s1

C T A C T G T A C C T A

t11 G 0 0 0 0 0 1 0 0 0 0 0 0
t10 C 1 0 0 1 0 0 0 0 1 1 0 0
t9 T 0 2 0 0 2 0 1 0 0 0 2 0
t8 A 0 0 3 0 0 0 0 2 0 0 0 3
t7 C 1 0 0 4 0 0 0 0 3 1 0 0
t6 T 0 2 0 0 5 0 1 0 0 0 2 0
t5 C 1 0 0 1 0 0 0 0 1 1 0 0
t4 T 0 2 0 0 2 0 1 0 0 0 2 0
t3 A 0 0 3 0 0 0 0 2 0 0 0 3
t2 T 0 1 0 0 1 0 1 0 0 0 1 0
t1 C 1 0 0 1 0 0 0 0 1 1 0 0

Figure 9.16: The matrix output by the function lmcsc.

It should hopefully be clear that the matrix presented in Figure 9.16 is the same as that in

Figure 9.15, but simply rotated by 180 degrees. Viewing the matrix in this orientation is useful to

us as it helps to highlight an area for improving efficiency. As our results are presented in a matrix

of this form we have an output structure which has O(nm) size with respect to its input lists of

length n and m. Each value in the matrix requires an application of llcp which requires O(n) time

to calculate. As such we currently have an algorithm with cubic efficiency.

However, examination of the matrix in Figure 9.16 should reveal that in fact calculation of each

individual value should be possible in constant time. Each value k at index (i, j) has a simple

relationship with the value to the top left at index (i− 1, j − 1). If the corresponding values from

s and t at (i, j) are equal, then the value at (i, j) will be one higher than the value at (i− 1, j− 1).

If the values from s and t at that point are not equal, then the value at (i, j) will be zero.

This relationship is a direct result of our definition for llcp. Recall that we have:

llcp (x : xs) (y : ys) = if (x = y)

then 1 + (llcp xs ys)

else 0

The crucial part here is the recursion. For two sequences (x : xs) and (y : ys), where

x = y, we can calculate the result in constant time based on the partial result of (llcp xs ys).

In the matrix shown in Figure 9.16, the column i represents the final segment of s with values

[s(n+1)−i, s(n+1)−(i−1), ..., sn]. Similarly the column j represents the final segment of t with values

[t(m+1)−j , t(m+1)−(j−1), ..., tm]. So, given that we can calculate the value k at (i, j) as follows:

k(i,j) = llcp [s(n+1)−i, s(n+1)−(i−1), ..., sn] [t(m+1)−j , t(m+1)−(j−1), ..., tm]

Then implicitly, given the following implication about the nature of fins+:

255

CHAPTER 9. CASE STUDIES 256

(
(x : xs) = (fins+ s)i

) ⇒ (
xs = (fins+ s)i−1

)

For k at (i− 1, j − 1) our value is given by:

k(i−1,j−1) = llcp [s(n+1)−(i−1), ..., sn] [t(m+1)−(j−1), ..., tm]

Thus we can say:

k(i,j) = if (s(n+1)−i = t(m+1)−j)

then 1 + k(i−1,j−1)

else 0

We can now compute the result for each item of the matrix in constant time, giving us an overall

algorithm of quadratic efficiency. Let us consider how we may construct a complete definition for

this quadratic time variant.

First we have a function line which generalises our above calculation for k(i,j) to calculate the

values for an entire row or column. This is supplied with a single value c from one DNA string, and

the entirety of the other string. It is also supplied with the results for the previous row/column.

The parameter pr here is used to store the previous result, given that our point of reference is

offset both horizontally and vertically.

line x pr [] [] = []

line x pr (y : ys) (r : rs) = (if (x = y) then pr + 1 else 0) : (line x r ys rs)

This then allows us to give a definition for our algorithm in terms of unfold. Here at each

stage of the evaluation we appeal to line to produce a row/column of results based on the previous

row/column of results, a single item from one query string, and the entirety of the other query

string. A simple function stage here is used to simply manage the correct placement of parameters

and results - all the interesting functionality remains in line.

lmcsd s t = unfoldr (stage (reverse s)) (null ◦ snd) (rs, reverse t)

where rs = map (const 0) s

stage ys (rs, x : xs) = (ns, (ns, xs))

where ns = line x 0 ys rs

The above will produce a matrix row by row, equivalent to the output of lmcsc. If we wish

instead to produce the output column by column we simply need to swap the parameters, to give

us the following:

lmcse s t = unfoldr (stage (reverse t)) (null ◦ snd) (rs, reverse s)

where rs = map (const 0) t

We can convert between the two output formats of these two variants by means of transpose:

256

CHAPTER 9. CASE STUDIES 257

lmcse s t = transpose (lmcsd s t)

We may also wish to provide a variant wherein intermediate results are paired with corre-

sponding values from the query string, and passed between successive stages in this format. We

have:

line′ x pr [] = []

line′ x pr ((y, r) : rs) = (y, if (x = y) then pr + 1 else 0) : (line′ x r rs)

lmcsf s t = unfoldr stage′ (null ◦ snd) (rs, reverse t)

where rs = map (λ y • (y, 0)) (reverse s)

stage′ (rs, x : xs) = (map snd ns, (ns, xs))

where ns = line′ x 0 rs

Step 3 - Data Refinement

Let us consider how our we might refine the types used in our function for finding the lengths of

maximal common sub-segments. Our lmcs functions generally have types of the form:

lmcs :: [A] → [A] → [[Int]]

Or more specifically, when dealing with DNA sequences we have:

lmcs :: [Base] → [Base] → [[Int]]

Here we have a two dimensional output - the matrix of results. As we have seen in past

examples, the best mechanisms for dealing with such two dimensional structures are either the

vector of streams or the stream of vectors. Both of these should facilitate the communication of a

quadratic sized structure in linear time. Assuming we wish to input both sequences as streams, a

data refinement for a vector of streams output might take the following form.

vslmcs :: bBasec → bBasec → 〈bAc〉n

Similarly a data refinement for a stream of vectors output might take the following form:

svlmcs :: bBasec → bBasec → b〈A〉mc

In the above the value n represents the length of the first input sequence (s) and the value m

represents the length of the second input sequence (t).

Given that our final definitions for lmcs were in terms of unfoldr, the output type will be

determined by how we choose to interpret unfoldr in our data refinement phase. If we wish to

achieve a vector of streams, we will need to appeal to vunfoldr. If we wish to achieve a stream of

vectors we will need to appeal to sunfoldr. Correspondingly the manner in which the types for

257

CHAPTER 9. CASE STUDIES 258

our function line (and implicitly stage) are refined will also need to be carefully considered. Let

us consider the types of these functions here. We have:

line′ :: Base → Int → [(Base, Int)] → [(Base, Int)]

stage′ :: ([(Base, Int)], [Base]) → ([Int], ([(Base, Int)], [Base]))

The important types to focus on here are type of the final results returned by each stage -

[Int] - and the types of intermediate values passed between each stage - [(Base, Int)]. To simplify

matters, let us ignore for the time being the act of distributing values from s over each instance of

stage, and assume instead we have a function stage with a pre-loaded value x. As such we have a

function of the following type:

stagex :: [(Base, Int)] → ([Int], [(Base, Int)])

Here the required functionality of stage is clearer. It should take in a list of intermediate values

from the previous stage and output a pair - a list of final results, and a list of intermediate values

to pass to the next stage.

For constructing vslmcs, we shall require that a stream is output at each stage. Here it may

well also make sense to pass the intermediate values between stages in stream form. We have:

sstagex :: b(Base, Int)c → (bIntc, b(Base, Int)c)

For constructing svlmcs, we shall require that a vector is output at each stage. However, given

that these vectors are output in a stream of vectors, we may not require communication between

individual stages - indeed they may not be manifested as separate processes. So here we leave the

intermediate values in list form.

vstagex :: [(Base, Int)] → (〈Int〉n, [(Base, Int)])

Step 4 - Process Refinement

Let us consider a process SSTAGE(x) which refines the functionality of the data refined sstagex

presented previously. Here we have a process which inputs a stream of intermediate values (pairs

of bases and integers) and outputs a stream of results, as well as a stream of intermediate values

to feed to the next stage. Such a process would have the following alphabet:

α SSTAGE(x) = {in :: b(Base, Int)c, outd :: bIntc, outr :: b((Base, Int))c}

We can define this process as follows in CSP:

258

CHAPTER 9. CASE STUDIES 259

SSTAGE(x) = pr := 0;

µ X• in.eot ? any → outd.eot ! True → outr.eot ! True → SKIP

|

in.value ? (y, n) →

if (x = y)

then r := pr + 1

else r := 0;

 pr := n;

outd.value ! r → outr.value ! (y, r) → X

The process SSTAGE(x) is depicted in Figure 9.17.

SSTAGE
(x)

[(y1, n1), (y2, n2), ..., (ym, nm)]
-

[(y1, r1), (y2, r2), ..., (ym, rm)]
-

?
[r1, r2, ..., rm]

Figure 9.17: The process SSTAGE(x).

We can then compose together a number of instances of this process, following the pattern of

V UNFOLDR, to form the process V SLMCS.

V SLMCSn(s) =

Pinitial ||

n− 1

||
i = 2

Pi

 || Pfinal

Pinitial = SSTAGE(sn)[in/in, out1/outd,mid1/outr]

Pi = SSTAGE(s(n+1)−i)[midi−1/in, outi/outd,midi/outr]

Pfinal = SSTAGE′(s1)[midn−1/in, outn/outd]

The process V SLMCSn depicted in Figure 9.18.

[tm, tm−1, ..., t2, t1] SSTAGE
(sn)

SSTAGE
(sn−1)

SSTAGE
(s2)

SSTAGE
(s1)

- - - - -. . .

?
?

?
?[rn1, rn2, ..., rnm]

[rn−11, rn−12, ..., rn−1m]

. . .
[r21, r22, ..., r2m]

[r11, r12, ..., r1m]

Figure 9.18: The VSLMCS process.

The process SSTAGE′(x) above is a simple variant of SSTAGE which, as it will be used as

the final stage in the network, is not required to output intermediate results on the conduit outr.

This has the following alphabet:

α SSTAGE′(x) = {in :: b(Base, Int)c, outd :: bIntc}

259

CHAPTER 9. CASE STUDIES 260

We can define this process as follows in CSP:

SSTAGE′(x)

= pr := 0;

µX• in.eot ? any → outd.eot ! True → SKIP

|

in.value ? (y, n) →

if (x = y)

then r := pr + 1

else r := 0

 ; pr := n; outd.value ! r → X

Step 5 - Handel-C Implementation

A Handel-C implementation can follow in a straightforward manner from the CSP definitions given

above. The one technical issue we have to deal with is deciding how to represent the paired values

passed between stages when it comes to communication using Handel-C channels. There are two

options are. One is to use two independent channels, one for the y value (the base) and another for

the n value (the intermediate result). However, given that the two values are always transmitted

at the same time this may seem somewhat wasteful of resources. Perhaps a better solution would

be to use Handel-C’s bit manipulation operators to combine the two values before sending them

on a channel, and then split them again after reception.

Our base values, as already noted, can be just one of four possible combinations, and therefore

we can represent them as two bit unsigned integers. Our result values can again be represented as

unsigned integers, and the required bit width will depend on the lengths of the sequences we are

examining. Some simple definitions and macros may prove helpful here.

#define RESULTBITS 8
#define BASEBITS 2
typedef unsigned int RESULTBITS Result;
typedef unsigned int BASEBITS Base;
typedef unsigned int (BASEBITS+RESULTBITS) BRPair;
macro expr brpair(b,r) = b @ r;
macro expr brfst(br) = br[RESULTBITS+(BASEBITS-1):RESULTBITS];
macro expr brsnd(br) = br[RESULTBITS-1:0];

So, our CSP process SSTAGE can be implemented with the Handel-C process SSTAGE. This

is given in Figure 9.19.

Note that some small optimisations may be possible with the code presented in Figure 9.19.

Local variables in Handel-C have an implicit cost in gates, and it can often be beneficial to use

a single local variable for more than one purpose where possible. So, for example, a few small

modifications to the above could allow us to replace the variables r and pr with just a single

variable, which would result in a smaller eventual circuit. However, for clarity we shall stick to the

above form.

260

CHAPTER 9. CASE STUDIES 261

macro proc SSTAGE(inl,outd,outr,x)
{

Bool eot;
BRPair y_n;
Result r, pr;
eot = False;
pr = 0;
do
{

prialt
{

case inl.value ? y_n:
if (x == brfst(y_n)) r = pr + 1;
else r = 0;
outr.value ! brpair(brfst(y_n),r);
outd.value ! r;
pr = brsnd(y_n);
break;

case inl.eot ? eot:
outr.eot ! True;
outd.eot ! True;
break;

}
} while (!eot);

}

Figure 9.19: Handel-C implementation of the SSTAGE process.

Given our implementation of SSTAGE we can now construct a Handel-C implementation for our

overall network VSLMCS. This is presented in Figure 9.20. The process SSTAGEb is a variant of

SSTAGE which does not output intermediate values, analogous to the CSP process SSTAGE′.

261

CHAPTER 9. CASE STUDIES 262

macro proc VSLMCS(n,streamin,out,s)
{

typeof(streamin) mid[n];
par (c=0;c<n;c++)
{

ifselect (c==0)
SSTAGE (streamin,out[0],mid[0],s[n-1]);

else ifselect (c<(n-1))
SSTAGE (mid[c-1],out[c],mid[c],s[n-(c+1)]);

else // ifselect (c==n-1)
SSTAGEb (mid[c-1],out[c],s[0]);

}
}

Figure 9.20: Handel-C implementation of the VSLMCS process.

Results

Results for the DNA processing network implemented on a Xilinx XCV2000e are given in Table 9.3.

Here two randomly generated sequences of equal lengths were used in each case. The actual

algorithm implemented was akin to that given in Figure 9.21. Here we wish to produce the matrix

in full, but do not wish to store the entirety as this would create quadratic storage retirements.

macro proc TESTVSLMCS (n,streamin,xs)
{

VectorOfStreams (Item(Result),vectora,n);
par
{

VSLMCS (n,streamin,vectora,xs);
VMAP (n,vectora,SINK);

}
}

Figure 9.21: Test harness for the VSLMCS process.

As always we make the assumption here that the length of time each cycle takes does not

change significantly with respect to the problem size. Here we have derived a linear (both in time

and resource usage) hardware implementation based on a quadratic specification. The cycle times

are very regular as we have seen in previous case studies - we have precisely 7n + 1 cycles for a

problem size of n. The slice usage is something in the region of 75n, which would suggest we can

deal with up to about 250 items on an XCV2000e.

262

CHAPTER 9. CASE STUDIES 263

items slices used (%) cycles

5 281 1% 36

10 612 3% 71

15 973 5% 106

20 1, 332 6% 141

25 1, 713 8% 176

30 2, 078 10% 211

35 2, 593 13% 246

40 2, 885 15% 281

45 3, 339 17% 316

50 3, 704 19% 351

60 4, 393 22% 421

70 5, 269 27% 491

80 5, 901 30% 561

90 6, 768 35% 631

100 7, 463 38% 701

Table 9.3: Results for the DNA processing network.

9.6 Summary

In this chapter we hope to have demonstrated how the methodology presented in this work facil-

itates the development of elegant, provably correct and efficient hardware implementations from

functional specifications. Not only have we demonstrated this for some ‘academic’ style problems

such as sorting, but also for the development of implementations that are genuinely usable in the

real world.

263

Chapter 10

Discussion

10.1 Future Work

10.1.1 Automation

The methodology could benefit from a tool to aid in the refinement process. Such a tool would not

only make the application of the methodology easier for the user, but could also serve to reduce

human errors which may inevitably occur when deriving an implementation by hand. Initial

thoughts about how such a tool could manifest itself might lead one to suggest a straightforward

compiler, which would input a specification in Haskell, and output an implementation in Handel-C.

However, deeper consideration of the required functionality, given the nature of the methodology,

is likely to instead lead to considering a tool with a more interactive workflow. The main reason

for this requirement of interactivity is that the refinement process is not a purely mechanical one -

at many stages the user is required to make decisions about the manner in which to proceed. The

most obvious area in which user interaction is required is in the data refinement phase. Choices

between stream and vector refinements will require knowledge from the user about the resource

availability and efficiency requirements of the implementation. Furthermore, such decisions will

be necessary for each component in the system - so in effect a number of these decisions will be

required during the refinement process.

This leads us to consider a potential tool which assists and guides the user through the refine-

ment process, rather than attempting to completely mechanise it in its entirety. Ideally, such a

tool should provide scope for transformation as well as refinement. The user should be able to

start with an intuitive specification, which may not initially be in a form best suited to refinement.

A guided transformation environment should allow the user to manipulate this specification, such

that it is better suited for refinement. For this we would require a term rewriting engine, supported

by a database of transformation laws. The database should contain all of the standard functional

transformation laws, such as those introduced by BMF [19], and the user should also be able to add

CHAPTER 10. DISCUSSION 265

their own. Engines capable of this sort of transformation task already exist - one good example is

MAG [60]. In short, this transformation phase should effectively allow the sorts of transformations

presented in the case studies to be performed in a semi-automated fashion.

An ideal starting point for the refinement process is where the function can be expressed as a

composition of components, wherein at least some of these components can be expressed in terms

of higher order functions. Given this kind of compositional specification, the refinement process

could then proceed step-by-step, refining each component in turn. For each component the user

should be presented with choices for data refinement, bearing in mind the input and output types

of that compositional phase. As usual, for single dimensional data structures (lists) the user should

choose between streams or vectors. Additionally partitioning may also be presented as an option.

For two dimensional structures (lists of lists) the standard set of alternatives should be offered -

streams of streams, streams of vectors, vectors of streams and vectors of vectors.

After the data refinement phase, the tool is then required to perform process refinement. Higher

order functions in the specification can be refined using processes from the library presented in

this work. The user may also wish to define additional processes of their own, and associate them

with higher order functions. Functionality in the specification which cannot be expressed using

higher order functions will of course have to be tackled separately. Often such functionality is

fairly trivial to refine - simple arithmetic expressions can, of course, be translated from Haskell to

Handel-C almost verbatim, and any changes may be purely syntactic. A fairly simple engine can

also be constructed to cope with such things as recursion unrolling - taking recursive definitions

in the specification and attempting to express them iteratively. Occasionally, of course, it may be

necessary as a last resort to leave some of the refinement effort to the user - perhaps by supplying

some annotated template code for the user to ‘fill in the blanks’.

10.1.2 Other Target Languages

In this work we have chosen to use Handel-C as the target implementation language. Handel-

C presents many benefits to us in this setting, given that it facilitates direct implementation on

an FPGA, and also as it uses the communication and parallelism models of CSP. However, this

methodology is not necessarily limited to working with Handel-C, and one potential area of future

work could be in looking at targeting other hardware description languages and environments.

CSP has been chosen as an intermediate stage in the refinement process, because it has a strong

formal basis and provides a very good framework in which to reason about processes and behaviour.

As already noted, Handel-C implements the communication and parallelism models of CSP, and as

such makes an ideal target language. However, any other language in which we can also implement

similar communication and parallelism operators may also prove a good candidate. In fact, for

the majority of refinements looked at in this work we require only a small subset of CSP’s many

constructs and operators. Specifically, the input and output operators (? and !), the parallelism

265

CHAPTER 10. DISCUSSION 266

operator (||) and the choice operator (|). Any language/environment in which we can implement

these operators with the same semantics becomes a potential target for this methodology.

In general terms, one obvious potential alternative target language is occam [55, 56], as this is

widely known for its strong correspondence with CSP. This is, of course, focused more on parallel

processing rather than targeting reconfigurable devices (accepting of course Handel-Occam [76], a

predecessor of Handel-C). However, much of the work in this thesis remains useful and relevant in

the wider field of parallel processing.

Returning to reconfigurable computing, we may also wish to consider the possibility of using

some of the frameworks discussed in section 1.5 as potential target environments. Pebble, Lava

and SAFL all facilitate, either directly or indirectly, the generation of circuit designs suitable for

implementation on FPGA devices. However, despite the high level nature of these languages,

they are still semantically closer to conventional hardware description languages such as VHDL

than they are to Handel-C. As such more effort will be required to move between CSP and these

frameworks than is required to move from CSP to Handel-C.

Furthermore, in the field of asynchronous circuit design, the Tangram [13, 14] and Balsa [11]

systems may also be interesting to explore as target languages. Both of these take CSP style

specifications as input, making use of parallelism and synchronous communication.

Finally, HardwareC [52] shares a number of similarities with Handel-C, and as such repre-

sents a good candidate for a potential alternative target. HardwareC supports parallelism and

communication in a similar fashion to Handel-C.

10.1.3 Wider Application Area

Another obvious avenue for future work is to look at a broader application area, given that addi-

tional case studies may highlight the need to consider new patterns and constructs.

In the JPEG decoder case study given in this work we have touched upon the field of compression

of multimedia data. This is a wide field and many other applications could prove interesting to

investigate. The work done on JPEG could naturally be expanded to looking at MPEG and

other audio/video compression standards. The ever increasing use of such technologies makes the

requirement for efficient and reliable implementations more relevant than ever - particularly given

the recent proliferation of video applications in handheld devices (such as mobile phones). These

sorts of ”gadgets” introduce requirements of low-cost, low-power operation wherein efficiency and

ease of upgrade are also very important factors. The FPGA is extremely well placed to meet all

of these demands. Moreover, such devices often work with unreliable communication mechanisms

- typically wireless or mobile networks. Loss or corruption of incoming data is commonplace,

meaning reliability is a key factor. The design methodology proposed in this work would help

significantly to ensure that such systems continue to operate correctly, even when the input to the

system is incorrect or unpredictable.

266

CHAPTER 10. DISCUSSION 267

In [28], Damaj looked at applying the methodology presented in this work to a number of

cryptographic algorithms. Encryption is becoming an ever more widely used technology, not only

because of the requirement to maintain privacy in today’s heavily connected world, but also be-

cause of the demands of content protection. Digital multimedia formats have made the lossless

reproduction of content (particularly music and films) extremely easy, which is an obvious prob-

lem for the copyright owners. Encryption in the form of DRM (digital rights management) is the

only real way to proceed if we wish to continue to benefit from digital media whilst ensuring that

copyright is respected. Already we can see encryption going hand-in-hand with almost any device

which deals in multimedia data - from personal computers, though MP3 players and mobile phones

to digital televisions. This relationship between digital content and encryption is likely to become

even stronger in the future. As such we again have the same demands for low-cost, efficient, reliable

and upgradeable implementations of encryption algorithms. As before, the FPGA, coupled with

this methodology, is ideally placed to meet these demands.

10.1.4 Control Applications

In this work we have focused mainly on algorithmics, and have not concerned ourselves greatly with

the issues of external control and interfacing. These control issues may involve such phenomena as

interrupts, time outs and triggers based on sensors. In general we have derived implementations

which solve a specific problem, and the interaction with the ‘outside world’ has been quite sim-

plistic. Given some input our implementations produce the corresponding output. In real-world

applications, such as avionics and robotics [77, 79], such algorithms may form just one part of a

larger system, and the interactions with external systems may be quite complex.

As such, one area of future work could be to look more closely at the control and interfacing

aspects of these systems. As part of this it would be important to look at how the specification

of a large system can be factorised into the functional aspects, which can be treated with the

methodology as presented here, and the interfacing/control aspects, which would require a wider

treatment such as timed CSP. Conveniently, as the methodology has a strong foundation in CSP, we

are given very good scope for reasoning about events and interaction in an integrated framework.

Tools such as FDR [30] may prove useful in proving the correctness of these aspects of a system.

10.1.5 Alternative Communication Strategies

In Section 4.7 we discussed some of the issues which may arise from the interpretation of lazy

evaluation in the process environment. This led us to consider how, in certain situations, we

may wish to consider alternative strategies for communication. The standard interpretation of the

stream in this work puts the producer in charge; it is the responsibility of the producer to signal

when the transmission has ended, such that the consumer knows to stop consuming. Whilst this

model works well for all situations where the stream is demanded, it may occasionally occur that

267

CHAPTER 10. DISCUSSION 268

we actually require the consumer to be in charge of the transmission. Particularly this may be

the case where the algorithm relies on lazy evaluation. The consumer may only require a small

subset of the values that a producer is going to output. Moreover, a producer may actually output

an infinite quantity of values. Without some means for a consumer to end the transmission this

sort of situation may result in producing processes not terminating properly - waiting indefinitely

to output a value that the consumer will never be willing to receive. In certain situations, as

illustrated in Section 4.7, this could even result in deadlock.

One possibility, as discussed in Section 4.7, would be to introduce an EOR signal to go with

the EOT signal. This would give the consumer a means of indicating that it has stopped receiving

from the corresponding stream. The producer would therefore be responsible to check for EOR

each time it attempts to output a value, and stop producing if it is signalled.

For a completely faithful interpretation of lazy evaluation in the process environment, we would

require the consumer to request each and every value in the stream from the producer in turn.

As such we would have two messages for every value communicated in the stream - the first a

request message from the consumer, and the second the actual value (or perhaps an EOT) from

the producer in return. The producer should not do any work whatsoever until it receives a request

for a value - only then should it perform any required calculation and send the value. Whilst this

strategy would solve the termination problems discussed above, for general use it is unnecessary,

and introduces an additional communication overhead which may be somewhat undesirable.

Yet more of these ‘special purpose’ communication strategies can be envisaged, and these could

be explored further in future work. For example, an alternative interpretation of the stream

wherein the producer does not signal EOT, but instead indicates the number of values it intends

to communicate at the start.

10.2 Conclusion

In this work we have set out to present a framework which reduces the complexity in developing

parallel hardware implementations from functional specifications. We shall now discuss and eval-

uate how well this objective has been achieved. A number of objectives and requirements for the

methodology were set out in the introduction to this work, and we shall examine here how these

have been addressed.

In general, we began by stating that the methodology should facilitate the refinement from a

specification in Haskell, a high level functional language to Handel-C, which can then be compiled

directly onto an FPGA. This objective will be discussed in part in our analysis of each of the

following requirements.

We required that the methodology should be able to expose parallelism through the refinement

process and provide alternatives for the type of parallelism used. This is achieved through the data

268

CHAPTER 10. DISCUSSION 269

refinement phase of the methodology. Here we presented two basic refinement strategies for list

types in the specification. The stream corresponds to sequential communication, and the vector to

parallel communication. We also examined combinations thereof - streams of streams, streams of

vectors and so on. This, coupled with the option to partition lists in many cases, gives us a wide

scope for implementation alternatives with different performance characteristics.

These data refinement alternatives can be illustrated when we consider the refinement of poly-

nomial time algorithms, as demonstrated by the case studies presented here. Typically, quadratic

time algorithms which employ two dimensional data structures (for example, lists of lists) can be

refined in a number of different ways depending on our requirements. At one extreme, we have a

vector of vectors which can communicate a quadratic sized structure in constant time, but requir-

ing quadratic processing resources. At the other extreme, a stream of streams will communicate a

quadratic structure in quadratic time but requiring constant resources. In the middle we have the

vector of streams and the stream of vectors which both implement linear time and linear resource

usage schemes. The data refinement aspect of the framework allows us to consider all of these

alternatives, tailoring an implementation to suit our needs, whilst all the time ensuring correctness

of the implementation.

In this work we have presented a substantial library of powerful components for hardware

design, which are based on higher order functions and combinatorial list processing functions.

We have looked extensively at how these can be interpreted and refined into different settings -

streams, vectors and combinations thereof. We have provided proofs that the CSP definitions for

our components (and in turn, their Handel-C implementations) correctly refine the functionality

of their original functional specifications. Given the expressiveness of these components, we can

use them in the definition of a number of algorithms. Having a library such as this which has

already been well defined and proven is of great advantage when developing implementations. The

often long compilation times inherent in development tools for hardware design can make mistakes

very costly. The benefits of using a library in this way manifest themselves not only in easing the

development effort itself, but also in proving the correctness of the overall implementation. As the

library components have already been proven to be correct, for a new implementation we need

only prove the correctness of the ‘bespoke’ items of functionality. As has been demonstrated in the

case studies - particularly the combinatorial algorithms - often this bespoke functionality is quite

trivial.

Some of the patterns of computation represented by these components will already be familiar,

and have been studied extensively elsewhere - take, for example, the vector interpretation of map,

or the ‘funnel’ network which refines fold with an associative operator. Importantly though here

we have given these a formal treatment, and provided a proof that such interpretations do correctly

refine their specifications. Other components examined here are perhaps less well known, and their

usefulness to parallel processing and hardware design has not before been identified as significantly

269

CHAPTER 10. DISCUSSION 270

as it has in this work. Of particular note is the function unfold. This is a rich pattern which

captures the functionality of many other functions, particularly list processing functions such as

tails, cp (Cartesian product), transpose and so on. It is useful in terms of parallelism because

of the way in which it ‘opens up’ a structure. An interpretation of this function with the output

refined as a vector provides scope for the parts to be processed independently in parallel. We have

seen this pattern used in a number of different forms in the case studies, often used in tandem with

a vector interpretation of map to process intermediate results, and a vector fold to collate them.

This combination of components works particularly well for algorithms which have intermediate

structures of quadratic size. Such quadratic algorithms can be implemented with linear efficiency

and resource usage in this way, and this has been demonstrated with several examples in the case

studies chapter.

Whilst efficiency of the implementations is of course important, a stronger emphasis in this

work is attributed to the issue of correctness. Between our Haskell implementations and our CSP

definitions, correctness is assured based on our refinement laws, both in terms of process and data

refinement. The data refinement step comes first, and this can be performed whilst still in the

world of functions - we can represent our concepts of vectors and streams as functional types. It

is by use of abstraction functions that we initially assert the correctness of our data refinements.

It is through Prd, a function which returns a process, that we translate from the functional types

of vectors and streams to the concrete communication behaviour they correspond to in the world

of processes. Here Prd is interpreted differently in the vector setting to how it is in the stream

setting. This special function Prd, in conjunction with our feed operator, also forms the basis to our

process refinement rule. With just these simple refinement laws, and the wealth of transformational

laws offered to us by functional programming, along with the process algebra of CSP, we have a

combined framework which facilitates the provably correct refinement from functions to processes.

Scalability has been a keyword throughout. This is important in a number of aspects. In terms

of the derived implementations, we strive for linear performance in both execution time and resource

usage, and the case studies show a number of examples where this is achieved from a starting point

of quadratic time algorithms. A basis of message passing has ensured our implementations are truly

scalable to any size of problem. In this way we can continue to benefit from increased availability of

larger reconfigurable devices without added complexity to the engineer, and with the reassurance

that we continue to maintain correctness.

270

Bibliography

[1] A. E. Abdallah. Derivation of parallel algorithms from functional specifications to csp

processes. In Bernhard Möller, editor, Mathematics of Program Construction, number 947

in LNCS, pages 67–96. Springer Verlag, 1995.

[2] A. E. Abdallah. Synthesis of massively pipelined algorithms for list manipulation. In L. Bouge,

P. Fraigniaud, A. Mignotte, and Y. Robert, editors, Proceedings of the European Conference

on Parallel Processing, EuroPar’96, number 1024 in LNCS, pages 911–920. Springer Verlag,

1996.

[3] A. E. Abdallah. Functional process modelling. In K Hammond and G. Michealson, editors,

Research Directions in Parallel Functional Programming, pages 339–360. Springer Verlag, Oc-

tober 1999.

[4] A. E. Abdallah and John Hawkins. Calculational design of special purpose parallel algorithms.

In Proceedings of the 7th IEEE International Conference on Electronics Circuits and Systems,

Jounieh (ICECS’2K), pages 261–267. IEEE Computer Society Press, December 2000.

[5] A. E. Abdallah and John Hawkins. Formal behavioural synthesis of handel-c parallel hardware

implementations from functional specifications. In Proceedings of the 36th Hawaii Interna-

tional Conference on System Sciences (HICSS-36 2003), page 278, 2003.

[6] A. E. Abdallah, G. Simiakakis, and T. Theoharis. Formal Development of a Reconfigurable

Ttool for Parallel dna Matching. In Proceedings of 7th IEEE International Conference on

Electronics, Circuits and Systems (IEEE/ICECS), pages 268–272. IEEE Computer Society

Press, December 2000.

[7] A.E. Abdallah. Filter Promotion Transformation Strategies for Deriving Efficient Programs

from z Specifications. In Proceedings of the 3rd IEEE International Conference on Formal En-

gineering Methods (IEEE/ICFEM), pages 157–167. IEEE Computer Society Press, September

2000.

[8] Ali E. Abdallah and Mark Green. An integrated csp-based tool for the visualisation, animation

and performance evaluation of message passing algorithms. In ICFEM, pages 189–, 2000.

271

BIBLIOGRAPHY 272

[9] David Agnew, Luc J. M. Claesen, and Raul Camposano, editors. Computer Hardware Descrip-

tion Languages and their Applications, Proceedings of the 11th IFIP WG10.2 International

Conference on Computer Hardware Description Languages and their Applications - CHDL

’93, sponsored by IFIP WG10.2 and in cooperation with IEEE COMPSOC, Ottawa, Ontario,

Canada, 26-28 April, 1993, volume A-32 of IFIP Transactions. North-Holland, 1993.

[10] J. Backus. Can programming be liberated from the von neumann style? a functional style

and its algebra of programs. Comm. ACM, 21(8), 1978.

[11] A. Bardsley and D. A. Edwards. The balsa asynchronous circuit synthesis system. In Forum on

Design Languages (2000). European Electronic Chips and Systems design Initiative (ECSI),

2000.

[12] Alexandra Barros. Provably correct refinement of Z specifications into functional prototypes.

PhD thesis, University of Reading, 1998.

[13] K. Van Berkel. Handshake circuits: An Intermediary Between Communicating Processes and

VLSI. PhD thesis, Eindhoven University of Technology, 1992.

[14] K. Van Berkel. Handshake circuits: an asynchronous architecture for VLSI programming.

International Series on Parallel Computation., 5, 1993.

[15] R. Bird and Oege de Moor. Algebra of Programming. Prentice-Hall, 1997.

[16] R. S. Bird. An introduction to the theory of lists. In Logic of Programming and Calculi of

Discreet Design, pages 3–42. Springer, 1987.

[17] R. S. Bird. Constructive functional programming, pages 13–70. Springer-Verlag, 1988.

[18] R. S. Bird. Introduction to Functional Programming Using Haskell. Prentice-Hall, 1998.

[19] R. S. Bird and L.G. Meertens. Two Exercices Found in a Book on Algorithmics. North

Holland, 1986.

[20] R. S. Bird and P. Wadler. Introduction to Functional Programming. Prentice-Hall, 1988.

[21] Richard S. Bird, Jeremy Gibbons, and Geraint Jones. Formal derivation of a pattern matching

algorithm. Sci. Comput. Program, 12(2):93–104, 1989.

[22] Richard S. Bird, Carroll Morgan, and Jim Woodcock, editors. Mathematics of Program Con-

struction, Second International Conference, Oxford, U.K., June 29 - July 3, 1992, Proceedings,

volume 669 of Lecture Notes in Computer Science. Springer, 1993.

[23] P. Bjesse. Automatic verification of combinational and pipelined fft circuits. Computer Aided

Verification, July 1999.

272

BIBLIOGRAPHY 273

[24] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava - hardware design in haskell. In

International Conference on Functional Programming, ACM SigPlan, page 278, Sept 1998.

[25] R.S. Boyer and J.S. Moore. A fast string searching algorithm. Communications of the ACM,

20:762–772, 1977.

[26] S. D. Brookes, C. A. R. Hoare, A. W., and Roscoe. A theory for communicating sequential

processes. J ACM, 31(7), 1984.

[27] I. Damaj, J. Hawkins, and A. Abdallah. Mapping high level algorithms onto massively parallel

reconfigurable hardware. In IEEE/ACS International Conference on Computer Systems and

Applications, Tunisia, pages 14 – 22, July 2003.

[28] Issam W. Damaj. Synthesis of Parallel Algorithms for Field Programmable Gate Arrays with

Applications from Cryptography. PhD thesis, London South Bank University, 2004.

[29] E. W. Dijkstra. A Discipline of Programming, volume 1 of LNCS. Springer Verlag, 1976.

[30] Failures–divergence refinement – fdr2 user manual. Formal Systems (Europe) Ltd.,

http://www.formal.demon.co.uk/FDR2.html.

[31] Jeremy Gibbons. Calculating functional programs. In Algebraic and Coalgebraic Methods

in the Mathematics of Program Construction International Summer School and Workshop.

Springer, 2002.

[32] Mike Gordon. The semantic challenge of verilog hdl. In Tenth Annual IEEE Symposium on

Logic in Computer Science, pages 136–145. IEEE Computer Society Press, June 1995.

[33] Shaori Guo and Wayne Luk. Compiling ruby into FPGAs. In Moore and Luk [67], pages

188–197.

[34] The handel-c language. Celoxica, http://www.celoxica.com.

[35] Mohamed Khalil Hani, Zulkalnain Mohd Yusof, and Koay Kah Hoe. A JPEG decompression

ASIC module designed using a VHDL module generator. Jurnal Teknologi, 33(D):19 – 34,

2000.

[36] Reiner W. Hartenstein and Manfred Glesner, editors. Field-Programmable Logic, Smart Appli-

cations, New Paradigms and Compilers, 6th International Workshop on Field-Programmable

Logic, FPL ’96, Darmstadt, Germany, September 23-25, 1996, Proceedings, volume 1142 of

Lecture Notes in Computer Science. Springer, 1996.

[37] The haskell 98 report, 1998. http://www.haskell.org.

273

BIBLIOGRAPHY 274

[38] John Hawkins and A. E. Abdallah. An overview of systematic development of parallel systems

for reconfigurable hardware. In Burkhard Monien and Rainer Feldmann, editors, Proceedings

of Euro-Par 2002, Parallel Processing, 8th International Euro-Par Conference Paderborn,

Germany, number 2400 in LNCS, pages 615–619. Springer Verlag, August 2002.

[39] John Hawkins and Ali E. Abdallah. A generic functional genetic algorithm. In 2001 ACS

/ IEEE International Conference on Computer Systems and Applications (AICCSA 2001),

26-29 June 2001, Beirut, Lebanon, pages 11–17. IEEE Computer Society, 2001.

[40] John Hawkins and Ali E. Abdallah. Derivation of scalable message-passing algorithms using

parallel combinatorial list generator functions. In WOTUG Commmunicating Process Archi-

tectures, Oxford (CPA 2004), September 2004.

[41] John Hawkins and Ali E. Abdallah. Hardware synthesis of a parallel JPEG decoder from

its functional specification. In Proceeding of IFIP Working Conference on Distributed and

Parallel Embedded Systems, Toulouse, France (DIPES 2004), pages 197–206, August 2004.

[42] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[43] C. A. R. Hoare, Ian J. Hayes, Jifeng He, Carroll Morgan, A. W. Roscoe, Jeff W. Sanders, I. H.

Sorensen, J. Michael Spivey, and Bernard Sufrin. Laws of programming. Communication.

ACM, 30(8):672–686, 1987.

[44] J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest common subse-

quences. Communication. ACM, 20(5), 1977.

[45] The jazz synthesis system. Improvsys Inc, http://www.improvsys.com.

[46] He Jifeng. From CSP to hybrid systems, pages 171–189. International Series in Computer

Science. Prentice Hall, 1994.

[47] G. Jones and M. Sheeran. Circuit design in Ruby, pages 13–70. North-Holland, 1990.

[48] G. Jones and M. Sheeran. Relations and refinement in circuit design. In Third Refinement

Workshop. Springer Verlag, 1991.

[49] Geraint Jones and Mary Sheeran. Designing arithmetic circuits by refinement in ruby. In Bird

et al. [22], pages 208–232.

[50] Mark B. Josephs. Receptive process theory. Acta Inf., 29(1):17–31, 1992.

[51] D. E. Knuth, J.H.Morris (Jr), and V.R. Pratt. Fast pattern matching in strings. SIAM Journal

on Computing, 6(1):323–350, 1977.

[52] D. Ku and G. De Micheli. Hardwarec: a language for hardware design (version 2.0). Technical

Report CSL-TR-90-419, Stanford University, 1990.

274

BIBLIOGRAPHY 275

[53] CIP language group. The Munich project CIP, volume 1 of LNCS. Springer-Verlag, 1984.

[54] R. Lazic, T. Newcomb, , and B. Roscoe. On model checking data-independent systems

with arrays with whole-array operations. In Twenty five Years of Communicating Sequen-

tial Processes, volume 3525 of LNCS. Springer, 2005.

[55] INMOS Ltd. The Occam Programming Manual. Prentice-Hall, 1984.

[56] Inmos Ltd. Occam 2 Reference Manual. Prentice Hall, 1998.

[57] W. Luk, V. Lok, and I. Page. Hardware acceleration of divide-and-conquer paradigms: a case

study. In D.A. Buell and K.L. Pocek, editors, Proc. IEEE Workshop on FPGAs for Custom

Computing Machines, pages 192–201. IEEE Computer Society Press, 1993.

[58] W. Luk and S. McKeever. Pebble: a language for parametrised and reconfigurable hardware

design. In Field-Programmable Logic and Applications, LNCS 1482, pages 9–18. Springer,

1998.

[59] Wayne Luk, S. R. Guo, Nabeel Shirazi, and N. Zhuang. A framework for developing parame-

terised fpga libraries. In Hartenstein and Glesner [36], pages 24–33.

[60] MAG - a tranformation tool for Haskell. Oxford University Computing Laboratory,

http://web.comlab.ox.ac.uk/oucl/research/pdt/progtools/mag/.

[61] Manju Manjunathaiah and Graham M. Megson. Compositional technique for synthesising

multi-phase regular arrays. In ASAP, pages 7–16, 2002.

[62] Manju Manjunathaiah and Graham M. Megson. Tools for regularizing array designs. Parallel

Algorithms Appl, 19(1):51–75, 2004.

[63] Tiziana Margaria and Thomas F. Melham, editors. Correct Hardware Design and Verifica-

tion Methods, 11th IFIP WG 10.5 Advanced Research Working Conference, CHARME 2001,

Livingston, Scotland, UK, September 4-7, 2001, Proceedings, volume 2144 of Lecture Notes in

Computer Science. Springer, 2001.

[64] J. Matthews, B. Cook, and J. Launchbury. Microprocessor specifcation in hawk. In Proceedings

of the IEEE International Conference on Computer Languages, 1998.

[65] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Defnition of Standard ML (Revised).

MIT Press, 1997.

[66] Ugo Montanari, José D. P. Rolim, and Emo Welzl, editors. Automata, Languages and Program-

ming, 27th International Colloquium, ICALP 2000, Geneva, Switzerland, July 9-15, 2000,

Proceedings, volume 1853 of Lecture Notes in Computer Science. Springer, 2000.

275

BIBLIOGRAPHY 276

[67] Will Moore and Wayne Luk, editors. Field-Programmable Logic and Applications, 5th Interna-

tional Workshop, FPL ’95, Oxford, UK, August 29 - September 1, 1995, Proceedings, volume

975 of Lecture Notes in Computer Science. Springer, 1995.

[68] C. Morgan, K. Robinson, and P. Gardinar. On the refinement calculus. Technical Report

PRG-70, Oxford University, Programming Research Group, 1988.

[69] Carroll Morgan. Programming from Specifications. Prentice-Hall, 1990.

[70] Carroll Morgan and Paul H. B. Gardiner. Data refinement by calculation. Acta Inf, 27(6):481–

503, 1989.

[71] Alan Mycroft and Richard Sharp. A statically allocated parallel functional language. In

Montanari et al. [66], pages 37–48.

[72] Zainalabdein Navabi. VHDL: Analysis and Modeling of Digital Systems. McGraw-Hill, 1993.

[73] V. Niculescu. Unbounded and bounded parallelism in BMF. case study: Rank sorting. Studia

Universitatis Babes-Bolyai, Informatica, XLIX(1):91–98, 2004.

[74] T. S. Novell. SMALL: A programming language for state machine design. In Proceedings of

the 1997 Canadian Conference on Electrical and Computer Engineering (CCECE/CCGEI) in

St. John’s, Newfoundland., May 1997.

[75] John W. O’Leary, Mark H. Linderman, Miriam Leeser, and Mark Aagaard. Hml: A hardware

description language based on standard ml. In Agnew et al. [9], pages 327–334.

[76] I. Page and W. Luk. Compiling occam into Field-Programmable Gate Arrays, pages 271–283.

Abingdon EE and CS Books, 1991.

[77] J. Peleska. Test automation for safety-critical systems: Industrial application and future

developments. In FME ’96: Industrial Benefit and Advances in Formal Methods, volume 1051

of LNCS, pages 39–59. Springer-Verlag, 1996.

[78] Jan Peleska. Design and verification of fault tolerant systems with csp. Distributed Computing,

5(1):95–106, 1991.

[79] Jan Peleska. Formal methods for test automation - hard real-time testing of controllers for the

airbus aircraft family. In Proc. of the Sixth Biennial World Conference on Integrated Design

and Process Technology (IDPT2002). Society for Design and Process Science, 2002.

[80] Jan Peleska. Applied formal methods - from csp to executable hybrid specifications. In

Communicating Sequential Processes, The First 25 Years, volume 3525 of LNCS, pages 293–

320. Springer, 2005.

[81] R. Sharp. Higher-Level Hardware Synthesis. PhD thesis, University of Cambridge, 2000-2002.

276

BIBLIOGRAPHY 277

[82] R. Sharp. Higher Level Hardware Synthesis, volume 2693. Springer-Verlag, 2004.

[83] Richard Sharp and Alan Mycroft. A higher-level language for hardware synthesis. In Margaria

and Melham [63], pages 228–243.

[84] Mary Sheeran. Describing butterfly networks in ruby. In Functional Programming, pages

182–205, 1989.

[85] Ying Shen and Theodore S. Norvell. Translating SMALL programs into FPGA configurations.

In Newfoundland Electrical and Computer Engineering Conference, October 1999.

[86] M. Sheran. µ FP , an algebraic VLSI design language. PhD thesis, Programming Research

Group, Oxford University, 1983.

[87] Satnam Singh. Designing reconfigurable systems in lava. In VLSI Design, pages 299–306,

2004.

[88] Standard VHDL reference manual, 1993. IEEE Standard 1076-1993.

[89] Verilog HDL language reference manual, October 1995. IEEE Draft Standard 1364.

[90] R.A Wagner and M.J. Fisher. The string-to-string correction problem. J. ACM, 21(1):168–173,

1974.

[91] L Yongjian and J He. Towards a theory of bisimulation for a fragment of verilog. In IPDPS,

2003.

277

